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ABSTRACT

Fundus images are the principal tool for observing and recognizing a wide range of ophthalmological
abnormalities. The automatic and robust methods based on color fundus images are urgently needed since
few symptoms are observable in the early stages of the disease. Experts must manually evaluate images to
detect diseases for screening procedures to be effective. Due to the complexity of the screening procedure and
the shortage of experienced personnel, developing successful screening-based treatments is costly. Although
existing automated approaches strive to address these issues, they cannot handle a wide range of diseases
and real-world circumstances. We design an automated deep learning-based ensemble method to detect and
classify eye diseases from fundus images to address the abovementioned problems. A deep CNN-based model
is proposed in the ensemble method that incorporates a mix of 20 layers, including the activation, optimization,
and loss functions. The contrast-limited adaptive histogram equalization (CLAHE) and Gaussian filter are
utilized in the pre-processing step to get more explicit images and eliminate noise. To avoid overfitting in
the training phase, augmentation techniques are applied. Three pre-trained CNN models, including VGG16,
DenseNet201, and ResNet50, are employed to compare and assess the efficiency of the proposed CNN
model. Experimental results demonstrate that the ensemble approach outperforms recent approaches, which
is comparatively state-of-art in the ODIR publicly available dataset.
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INTRODUCTION

Infections of the fundus are the significant and
primary cause of impairment in humans on a global
scale (Jonas et al., 2014). According to Costagliola
et al. (2009), the number of people living with diabetic
retinopathy (DR) will exceed 400 million by 2030,
while the prevalence of severe glaucoma could exceed
80 million by 2020. Fig. 1 illustrates the efficacy of
the most prevalent ocular conditions, including DR,
glaucoma, cataracts, age-related macular degeneration
(AMD), uncorrected refractive error (URE), corneal
opacity, and other disorders. In the case of ophthalmic
diseases, they are becoming a big issue for public
health worldwide. It is possible that the ophthalmic
condition might induce lifelong blindness since it has
irreversible symptoms.

To improve patients’ quality of life, early detection
of eye problems is vital. A WHO research from
2021 estimates that there are 2.2 billion people with
visual impairments globally, with around 1 billion
preventable cases (WHO, 2022). On the other hand,
there are fewer ophthalmologists compared to the

number of patients. In addition, manually scanning
the fundus is a very time-consuming process that
places a large amount of reliance on the expertise
of ophthalmologists. Consequently, it is essential to
have an automated computer-aided diagnostic tool for
scanning ocular diseases.

It is challenging to develop a computer-aided
diagnosis system, for instance, Microaneurysm is
a crucial guideline for DR screening. Furthermore,
it is difficult to accurately detect ocular disorders
due to inadequate contrast between the lesion and
background pixels, an irregular lesion morphology,
and significant variations between the same lesion
spots produced by different cameras. Then fluorescein
angiography and optical coherence tomography (OCT)
are two techniques to explore the retina in greater
depth. Optical coherence tomography (OCT) image
acquisition methods have recently been developed.
However, these devices are more expensive than
fundus cameras. The advent of low-cost, high-
capacity computers in recent years has made artificial
intelligence (AI) potentially crucial to the analysis
of medical images. To boost disease diagnosis, AI
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Fig. 1: The prevalence of different visual disorders.

research aims to develop models that can work with
image-capturing tools.

Deep learning models for eye disease detection
have been constructed, and their performance has
been considered noteworthy. However, there are still
some drawbacks. Firstly, some prior research has been
focused on identifying and classifying only one to
three disorders: DR (Wang et al., 2020; Jordi et al.,
2019; Sarki et al., 2020), glaucoma (Orfao and Haar,
2021; Raghavendra et al., 2018; Chai et al., 2018;
Gupta et al., 2022), and cataracts (Junayed et al.,
2021b; Khan et al., 2021). However, considering the
real needs of patients with fundus illness daily, we
believe that developing a more effective and reliable
fundus testing approach to detect various diseases
is crucial. Secondly, it’s difficult to train a single
model to attain high disease detection accuracy with
limited fundus imaging data and inevitable picture
noise. Thirdly, several deep learning-based methods
(Li et al., 2019a; 2020; Gour and Khanna, 2021;
Yang and Yi, 2022) utilized the pre-trained models or
proposed model with a lot of blocks. These models
had heavy architectures due to the increased number
of layers, weights, and parameters. Because of this,
classifying and detecting eye disorders using these
deep learning-based algorithms require a significant
amount of computing cost.

Contributions. We suggest an end-to-end
ensemble model based on deep learning to diagnose
eight distinct fundus disorders to overcome the
aforementioned issues. The main contributions of our
study are as follows:

– We design an automated deep learning-based
ensemble method to detect and classify eye
diseases from fundus images. Due to smartphones’
widespread availability, this method might be
utilized by the general public as a remote screening
tool, particularly in impoverished countries where
few ophthalmologists are accessible.

– In this article, we propose a deep CNN-based
model as an attachment for the ensemble approach.
To decrease the computational cost, the CNN
model combines 20 layers, along with the
activation function, optimization technique, loss
function, and batch size.

– To get clearer images and eliminate noise,
contrast-limited adaptive histogram equalization
(CLAHE) and Gaussian filter are employed in
the pre-processing step, followed by augmentation
approaches.

– Three pre-trained CNN models, including VGG16,
DenseNet201, and ResNet50, are compared to
demonstrate and assess the efficiency of the
proposed CNN model. In addition, the ensemble
technique is compared to contemporary state-
of-the-art techniques, showing that our method
outperforms others.

RELATED WORKS

Several machine learning and deep learning
techniques have been used to study the detection
of ocular disorders. Some of the approaches to eye
disorders are extensively described in this section.
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For the ODIR database, Islam et al. (2019)
proposed a shallow CNN approach that requires
initial fundus image training. Images of the left
and right eyes accompany every label in the ODIR
database. The labels associated with eye disorders
were removed after they carefully examined each
picture on their own. This streamlined the task but did
not provide a model that can concurrently recognize
and categorize many diseases for a set of photos.
Then a complete integrated learning model was then
given by Qummar et al. (2019) by combining five
CNN models: Resnet 50, InceptionV3, Xception,
Dense121, and Dense169. Five categories were used
in this paradigm to categorize DR: normal, mild,
moderate, severe, and PDR (Infectious Eye Disease).
The model’s accuracy percentage is 80.8%. Jordi et al.
(2019) proposed an approach in which the ODIR
database would be changed to solve the challenge of
multi-class categorization. VGG16 and InceptionV3
are the pre-trained architectures that categorize fundus
pictures taken from the ODIR database. Following
this, the same database is used to make use of the
substantial spatial correlations between the two-color
fundus pictures. A transfer learning technique based on
ResNet architecture and a Dense Correlation Network
was proposed by Li et al. (2019b). This approach,
however, is computationally costly (for example, the
trainable parameters are 74.2M), and the accuracy is
82.7%. Another study, (Wang et al., 2020), created
a multi-label classification clustering algorithm using
the pre-trained EfficientNet architecture. In the first
part, the EfficientNet network is utilized for feature
extraction, and in the second, a custom neural network
architecture is employed for multi-label classification.
This method of experimentation also uses the ODIR
2019 dataset, which has an accuracy of 89%. However,
they didn’t use preprocessing techniques to reduce
visual picture noise and boost accuracy.

Several studies attempted identifying two or three
eye diseases using pre-trained deep learning models.
For instance, Li et al. (2019a) successfully attained
an accuracy of 98.6% when using the VGG16
model to categorize AMD and DME in a dataset
of 207,130 pictures gathered through OCT imaging.
An 18 convolutional neural network was built by
Raghavendra et al. (2018) to diagnose just Glaucoma
using fundus photographs. The model used in this
paper had an accuracy of 98.13%. An R-CNN, an
FCN, and a customized CNN model were provided to
identify Glaucoma as part of the research conducted
by Chai et al. (2018). Through the use of the dataset
in the process of model evaluation, they were able
to achieve a success rate of 91.51%. Khan et al.
(2020) used the transfer learning pipelines to detect
three forms of eye illness, including normal, Cataract,

and Hypertensive Retinopathy were improved by
using the average of estimates from pre-trained CNN
models, consisting of ResNet50, InceptionResNetV2
(Siciarz and McCurdy, 2022), EfficientNetB0 (Gaur
et al., 2021), and EfficientNetB2 (Ayana et al., 2022).
An enhanced and adaptive histogram equalization
technique based on morphological processes was
used instead of raw photos. In binary classification,
the proposed ensemble-based method beat the pre-
trained CNN models. Each of the five models
had an accuracy rate of 82.57%, 80.63%, 80.67%,
84.22%, and an ensemble model accuracy rating of
85.08%, respectively. Orfao and Haar (Orfao and
Haar, 2021) employed a variety of pre-trained models,
including InceptionV3, Alexnet (Chen et al., 2021),
VGGNet, and ResNet, to detect Glaucoma, Diabetic
Retinopathy, and Cataracts from fundus photos. The
InceptionV3 model, which was 225 MB in size and
had an accuracy of 99.30% and an F1-Score of
99.39%, produced the best results. After that, when
Histogram of Oriented Gradients (HOG) features are
employed for feature extraction, the accuracy of the
Support Vector Machine (SVM) is 76.67%, and its F1-
score is 76.48%, respectively. The researchers Junayed
et al. (2021b) next used a suggested CNN model
to categorize only cataract photos using datasets that
were freely accessible. This article uses specific pre-
processing processes, such as normalization and data
augmentation. These techniques were employed to
improve the accuracy of the data. Their precision was
exceptional; nonetheless, the test was designed only
to find cataracts, not to score where they were in the
eye. Another study by Khan et al. (2021) selected an
architecture based on the VGG19 (Han et al., 2021)
model to diagnose cataracts autonomously from color
fundus pictures. This model achieved an accuracy and
prediction rate of 97.47%, respectively.

In addition, several recent works (Li et al.,
2020; Gour and Khanna, 2021; He et al., 2021;
Yang and Yi, 2022) utilized the ODIR database to
identify and categorize eight types of eye illnesses.
For instance, (Li et al., 2020) tried to detect
multiple eye diseases using state-of-the-art deep
neural networks. When it comes to multi-disease
categorization, expanding the number of nodes in
a network isn’t enough; a well-structured neural
network-based approach is required, they claimed.
After that, Gour and Khanna (2021) employed a
transfer learning-based convolutional neural network
(CNN) to detect eight categories of eye disease. On the
ODIR database, VGG16 pre-trained architecture with
SGD optimizer appears to be better for multi-class
multi-label fundus picture classifications than four
other pre-trained CNN architectures with two other
optimization techniques. 84.93%, 85.57% achieved
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Fig. 2: The overall flowchart of the proposed-ensemble method includes a pre-processing step, a step of
ensembling by three pre-trained models, our proposed CNN model with a feature selection algorithm, and finally,
a classification step.

the AUC, F1-score, and accuracy with VGG16 and
SGD optimizer, and around 85%, respectively. After
that, He et al. (2021) proposed another work to
detect eye disease using the ODIR database. In He
et al. (2021), the pre-trained models are used as a
feature extractor, a module for spatial correlation, and
a classifier for classification scores. 93% and 91.3%
obtain the AUC and F1-Score; however, their proposed
network is too expensive (i.e., 74.2M parameters)
because of their proposed feature correlation module.
Recently, Yang and Yi (2022) suggested another deep
learning-based network including too many modules
such as DS block, DSR block, and SE block to
decrease the computation required and improve the
calculation of the feature of the images and filter
the features. The accuracy, precision, F1 value, and
kappa score of the DSRA-CNN network suggested
in this research are respectively 87.90%, 88.50%,
88.16%, and 86.17% when tested on the ODIR dataset.
However, employing many modules, their architecture
showed computational cost issues (i.e., around 26M),
and it may face time complexity problems.

The literature review results show that several
experiments have been conducted employing pre-
trained deep learning algorithms on a few diseases,
such as DR, cataracts, and glaucoma. In contrast,
few studies have been published employing the
recommended deep-learning techniques to diagnose
eye diseases. Consequently, several barriers still exist,
including raising model accuracy while decreasing
computational burden, reducing the number of training
parameters, and including more common eye diseases.

MATERIALS AND METHOD

This article suggests a novel method for detecting
and classifying eight different ophthalmological

diseases utilizing fundus images. Fig. 2 depicts the
proposed framework, which is divided into three
phases: First, a pre-processing step is done with
three methods, including Contrast Limited Adaptive
Histogram Equalization (CLAHE), Gaussian filter,
and data augmentation. Secondly, the pre-processed
images are placed into our proposed-ensemble model
for feature extraction up to the fully connected (FC)
layer; then, the features are concatenated and selected
most efficient features by the mRMR algorithm.
And finally, the classification process is done by
the SVM classifier in 8 distinct eye disease classes.
The following subsections provide more in-depth
information on each stage of the suggested structure.

DATASET

For this research, we leverage color fundus images
from the Ocular Disease Intelligent Recognition
(ODIR) collection (ODIR-2019, 2022). There are a
total of 8 types of illnesses or disorders represented
among the 3098 healthy, 1406 diabetic, 224 glaucoma,
265 cataracts, 293 AMD, 107 hypertension, 242
pathological myopia, and 791 other samples (total
of 6426 images). Among others, Canon, Zeiss, and
Kowa cameras are often employed to record fundus
photos, which are subsequently saved in JPG format
with different sizes and resolutions. Professional
ophthalmologists perform all classification techniques
in the dataset. Several examples from the ODIR dataset
for each class are shown in Fig. 3.
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Fig. 3: The sample images from the ODIR dataset.
(a), (b), (c), (d), (e), (f), (g), and (h) show Normal,
Other Abnormalities, AMD, Glaucoma, Cataract,
Myopia, Diabetic Retinopathy, and Hypertension
images, respectively.

DATA PRE-PROCESSING

The overall efficiency of the model is highly
dependent on the quality of the input pictures. In order
to improve the efficacy of the image classifications,
image pre-processing is essential. In the past, the
system’s efficiency suffers from the pictures’ blurry
borders. This means that all of the photos need
to be regulated and their characteristics improved.
Our suggested method divides the pre-processing
phase into three distinct phases: the Contrast Limited
Adaptive Histogram Equalization (CLAHE) (Sahu
et al., 2019) phase, the Gaussian filter (Wang et al.,
2018) phase and the data augmentation phase.

At first, the images are cropped to eliminate
the extra black pixels surrounding the retina. Then
CLAHE method is employed to enhance the images.
CLAHE effectively improves the poor contrast of
medical pictures, brightens fundus pictures (Sahu
et al., 2019), and improves border and regional
information. CLAHE is performed to the L channel of
the eye pictures with more excellent contrast, with a
tile size of 8 by 8 and a Clipping Limit of 5.0. The
CLAHE approach could generate some noise in the
images. Thus we employ the Gaussian filter, as shown
in eq (1), to eliminate it.

G f (a,b) = Ae
−(a−λa)2

2β2a
+

−(b−λb)
2

2β2
b (1)

where λ and A represent the mean and amplitude, as
well as β indicates the standard deviation for both
of the variables a and b, respectively. The results of
applying the CLAHE and Gaussian filters to the photos
are shown in Fig. 4.

With deep learning-based models, having a
significant amount of training data is crucial.
Overfitting is possible during neural network training

due to the small size of the initial eight-class dataset.
Five additional data augmentation procedures, such as
random rotation by 30 degrees to the left or right,
horizontal flipping, shearing, scaling, and translation,
are implemented to enhance the size of the training
dataset and improve the classification performance and
overall efficiency of the CNN. After that, the pictures
are resized to a specific ratio (256 × 256) for optimal
viewing.

Fig. 4: The sample images of the pre-processing (a)
normal images, (b) CLAHE images, and (c) Gaussian
filter images from the ODIR dataset.

PROPOSED-ENSEMBLE MODEL
The term ”ensembles of models” refers to merging

the results of several different statistical models
into a single comprehensive prediction. This paves
the way for the model’s capabilities to reflect the
improved estimations more properly and achieve
greater performance than any single contributing
model. In this study, the proposed framework, shown
in Figure 2, is carried out in three-steps processes
for the automatic diagnosis of ophthalmological
disease from fundus images. In the first step, our
proposed CNN model with three well-known pre-
trained models, including VGG-16 (Simonyan and
Zisserman, 2014), ResNet50 (He et al., 2016), and
DenseNet201 (Jaiswal et al., 2021), respectively, are
employed as feature extractors. In the second step,
the eye disease images are extracted by the proposed
CNN, VGG-16, ResNet50, and DenseNet201. These
features are acquired before the softmax layer of
each model. Obtaining these features via traditional
techniques is challenging and requires great expertise,
increasing the overall cost.f

On the other hand, feature extraction is performed
automatically using deep learning architectures
quickly. However, the final FC layer of each model,
including our proposed model, yielded a total of 4000
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features when concatenated. Since distinct low-level
features (redundant features) are acquired separately
utilizing three well-known pre-trained models with
the proposed CNN, an excessive number of duplicate
features might reduce classification accuracy and
increase execution time. Therefore, to identify the
most compelling features, the mRMR method (Yan
and Jia, 2019) is utilized in the third step. After
that, 400 efficient features are chosen randomly by
the mRMR method and fed into the Support Vector
Machines (SVM) (Soumaya et al., 2021) classifier for
the classification with 5-fold cross-validation. SVM
is a mechanism for conceptually separating data from
many classes in the most efficient manner. Decision
boundaries, or hyperplanes, are established for this
purpose. SVM can produce good outcomes in high-
dimensional spaces while also making optimal use of
memory. The proposed CNN model for this work and
the mRMR feature selection algorithm are described
in detail below.

Fig. 5: The design of our suggested CNN model.

Proposed CNN Model
CNN’s are the most widely used deep learning

algorithms for training medical images to classify
anomalies in medical images (Chan et al., 2020).
This is because CNN keeps distinguishing features
when evaluating input images. Regarding eye disease
images, spatial connections are critical in retinal
pictures, such as where blood vessels begin to collapse
and how yellow liquid accumulates around the retinal
area. Sometimes, the pre-trained CNN models are not
appropriately suited for medical images. In addition,
their computational cost (i.e., parameters, execution
time) is excessively high due to the employment of
several layers. Because the pre-trained models were
created for certain particular scenarios, such as object
identification (Dhillon and Verma, 2020) and normal

image classification (Zaidi et al., 2022). Considering
this, we introduce a deep CNN model to recognize
and classify eight different types of eye diseases. Fig.
5 depicts the proposed architecture for the model.
This model has 20 layers, some of which are used
for feature extraction and classification. These layers
include conv (convolution), MP (max-pooling), BN
(batch normalization), dropout, and DL (dense layers).
The feature extraction and classification modules
include 15 and 5 layers, correspondingly. The phase of
feature extraction and the processes for classification
are merged in deep learning-based techniques, but in
manual feature extraction methods, these two phases
are kept distinct from one another.

As the first step in training a CNN, this network
takes input images. To improve its effectiveness, this
model starts with an input layer size of 256×256
and gradually adds more and more CNN layers. The
hyperparameter may be adjusted using a variety of
settings. For the first convolutional layer, we use
32 filters, a 3×3 kernel size, and a zero Padding
layer. Then, we use a multi-protocol (MP) layer. The
output from this feature is split into three separate
convolutional layers. A convolutional layer, a BN
layer, a Leaky ReLU (LR), and a Max Pooling (MP)
layer make up each convolutional layer. It uses an LR
activation function with MP and BN layers after each
convolution layer. When using an MP layer with a
stride of 2, the data representation size is significantly
reduced. Since a higher pixel count is correlated to
further parameters, which need massive amounts of
data, this mostly works to shrink the picture size.
Convolutional layer 2 is shrunk from 256 × 256 to
128× 128, but filter size and stride remain the same
at 16 filters each. We use the same stride and filter size
for the third convolutional layer but increase the size
to 64 × 64. Completion, adaptation, overfitting, and
effectiveness on unexplored features are all enhanced
when BN layers are utilized as regularization layers.

The results from these three units are combined
and sent to fully connected (FC) layers for
classification. The purpose of these stages (flattening,
dense, dropout) is to detect visual problems. The
filtered characteristics of eye diseases are collected
using two sets of dense and dropout layers, with
the dense layers specified by 256 and 512 flattened
neurons. To prevent the model from overfitting, 70%
and 50% of the neurons in the hidden layers are set to 0
at every iteration during the training step, respectively.
The proposed CNN model’s settings are shown in
Table 1. Finally, the SVM is used in place of softmax
to categorize eight distinct disorders.
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Table 1: The settings of the proposed CNN model

Blocks Operator Filters Configuration Stride Output Shape

1 Conv2D 32 KS: 3x3; LeckyReLU - 256x256x32
MP - KS: 2x2 2 128x128x16

2
Conv2D 64 KS: 1x1; LeckyReLU - 128x128x64

BN - KS: 2x2 - 128x128x64
MP - KS: 2x2 2 56x56x64

3
Conv2D 32 KS: 3x3; LeckyReLU - 128x128x32

BN - KS: 2x2 - 128x128x32
MP - KS: 2x2 2 56x56x32

4
Conv2D 96 KS: 7x7; LeckyReLU - 128x128x96

BN - KS: 2x2 - 128x128x96
MP - KS: 2x2 2 56x56x48

5 Concate - - - -

FC

Flatten - - -
Dropout - 0.7 - -
Dense - 512; LeckyReLU - 512

Dropout - 0.4 - 512
Dense - 256; LeckyReLU - 256

Softmax - 8 - 8

Table 2: The performance of the suggested technique for the extraction of features in comparison to the efficacy
of four other methods for the extraction of features (VGG-16, Inception-v3, ResNet-50, and EfficientNet-B0) in
terms of accuracy (Acc), sensitivity (Sen), specificity (Spec), precision (Pre), kappa (Kp) and F1-score (FS).

Methods Acc (%) Sen (%) Spec (%) Pre(%) Kp (%) FS (%)
DenseNet201 89.49 82.49 81.56 88.79 86.02 85.11

VGG16 90.28 83.82 81.24 88.95 86.19 85.76
ResNet-50 91.20 84.16 83.62 89.05 87.26 86.98

Proposed CNN 93.81 85.77 85.09 91.63 88.01 89.51
Proposed Ensemble 96.96 87.38 86.81 92.77 89.01 89.35

mRMR feature selection

Regarding classification accuracy, feature
selection is one of the most crucial aspects. The
term ”feature selection” refers to the procedure of
determining from among a large number of features
that improve the effectiveness of a decision support
system. The selection of features used in CNN designs
helps to decrease workload, classification error, and
noise by detecting better and more distinguishing
features while also enhancing the efficiency of
a CNN model. Some popular feature selection
algorithms (Boutsidis et al., 2008; Robnik-Šikonja
and Kononenko, 2003; Raghu and Sriraam, 2018),
for example, the LDA and PCA (Boutsidis et al.,
2008) feature selection algorithms work well only
when applied to linear feature sets. On the other
hand, ReliefF (Robnik-Šikonja and Kononenko, 2003)
is a distance-based method for selecting features
that provide both negative and positive weights. In
addition, features with a negative weight from ReliefF
are considered redundancy features.

On the other hand, the most frequently employed
feature selection approach, NCA (Raghu and Sriraam,
2018), is a weight-based algorithm for generating
positive weights. As a result, ReliefF and NCA are
applied together to remove the redundant features.
However, applying both models one after another
is quite time-consuming. In contrast, the mRMR
approach (Yan and Jia, 2019) has been presented to
reduce the calculation costs while improving accuracy.
Its goal is to find the best feature subset based on
a trade-off between relevance and repetition among
features and between feature and class labeling. This
strategy is effective because it maximizes the relevance
(L), also known as the mutual information (I), between
the class and the features while simultaneously
reducing the redundancy (D), also known as the
average I between the features. The values of L
and D can be determined by using eq. (5) and (6),
respectively.
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Table 3: The performance of the suggested technique for the extraction of features in comparison to the efficacy
of four other methods for the extraction of features (VGG-16, Inception-v3, ResNet-50, and EfficientNet-B0) in
terms of accuracy (Acc), sensitivity (Sen), specificity (Spec), precision (Pre), kappa (Kp) and F1-score (FS).

Methods Acc (%) Sen (%) Spec (%) Pre(%) Kp (%) FS (%)
DenseNet201 89.49 82.49 81.56 88.79 86.02 85.11

VGG16 90.28 83.82 81.24 88.95 86.19 85.76
ResNet-50 91.20 84.16 83.62 89.05 87.26 86.98

Proposed CNN 93.81 85.77 85.09 91.63 88.01 89.51
Proposed Ensemble 96.96 87.38 86.81 92.77 89.01 89.35

L( f s) =
1

| f s|

| f s|

∑
a=1

I ( fa,cl) (2)

D( f s) =
1

| f s|2
| f s|

∑
a=1

| f s|

∑
b=1

I ( fa, fb) (3)

where f s stands for the feature subset, cl for the
class label (targeted value), and | f s| is the size of the
feature subset, and fa and fb stand for the ath and
bth features, respectively. I( fa,cl) represents the I value
between the fa feature and class cl. Similarly, I ( fa, fb)
is the I value between the fa and fb features. More
thorough details about mRMR can be obtained from
(Ding and Peng, 2005).

In this experiment, 6426 eye disease images are
utilized across eight classes. The dimension of the
feature vector derived from each model is 6426 ×
1000. When these features are combined by three pre-
trained models and our proposed model, a total of
6426 × 4000 feature vectors are produced. During this
feature combination process, the number of features
does not decrease. Each architecture’s features are
combined side by side, not over the other. This
approach aims to integrate numerous feature subsets of
different models to find an ideal subset of features to
increase classification accuracy. After that, the mRMR
feature selection approach is employed to optimize the
features (randomly selects 400 features (100 features
from each model) randomly). The pictures of eye
diseases are classified into their respective classes in
the last stage.

EVALUATION METRICS

Confusion Matrix (Jeny et al., 2020;
Yang et al., 2021) provides six assessment
criteria to evaluate our suggested method’s
success. The six evaluation metrics are
accuracy ( TrPv+TrNv

TrPv+TrNv+FlPv+FlNv ), Recall/Sensitivity
( TrPv

FlNv+TrPv ), Precision ( TrPv
TrPv+FlPv ), F1-score (2 ×

Precision×Recall
Precision+Recall ), Specificity ( TrNv

FlPv+TrNv ), Kappa (k =
2×(TrPv×TrNv−FlNv×FlPv)

(TrPv+FlPv)×(FlPv+TrNv)+(TrPv+FlNv)×(FlNv+TrNv) ), and

the AUC for the Receiver Operating Characteristic
(ROC) curves [20], respectively. In this case, a True
Positive (TrPv) comprises instances in which the
forecast and actual result match. When our forecast
of ”no” matches the actual result (”no”), we have a
true negative (TrNv). We have a false positive if we
expect a YES and get a NO (FlPv). Finally, a false
negative occurs when our prediction is NO, but the
actual result is YES (FlNv).

RESULTS AND DISCUSSIONS

EXPERIMENTAL DETAILS
All of the experiments are conducted with the help

of PyTorch (Kochgaven et al., 2021) on a computer
with an Intel Core i9-10850K CPU operating at 3.60
GHz, 64 GB of RAM, and an Nvidia GeForce RTX
2070 Super GPU that has 8 GB of memory. During the
testing, the ADAM optimizer (Chauhan et al., 2021) is
used. A momentum of 0.8 with a learning rate of six
times 10-4 and a mini-batch size of 32 with 80 epochs
are employed. The RGB photos included in the input
have a size of 256 × 256 pixels on each side.

Table 4: According to levels of accuracy (Acc),
sensitivity (Sen), and specificity (Spec), for every eye
disease class by our proposed approach

Disease Classes Acc (%) Sen (%) Spec (%)
Normal 97.24 87.08 93.75

Glaucoma 96.43 82.96 89.98
Diabetics Retinopathy 99.76 87.85 83.59

AMD 95.64 89.17 81.57
Hypertension 96.24 88.99 85.28

Cataract 97.42 90.24 84.79
Myopia 95.88 87.79 91.03

Other abnormalities 97.13 85.36 84.41

RESULTS AND COMPARISON
Fig. 6 depicts a visual representation of our

proposed method to find eight different types of eye
diseases. From the examples, it can be observed
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Table 5: The comparison between our proposed approach with other existing approaches in terms of AUC, F1-
Score (FS), and Kappa score (KS).

Author Method AUC F1-Score (FS) Kappa (KS)
Islam et al. (2019) CNN 80.50 85.00 31.00
Jordi et al. (2019) Inception V3 88.38 89.84 51.86

Li et al. (2020) VGG16 86.81 87.30 44.94
Wang et al. (2020) EffifiNetB3 67.00 85.00 43.00

Gour and Khanna (2021) Two I/PVGG16 84.93 85.57 -
He et al. (2021) ResNet-101 93.0 91.30 63.70

Yang and Yi (2022) DSRA-CNN 93.0 88.16 88.67
Proposed CNN (Ours) SVM 92.00 89.51 88.01
Proposed-Ensemble SVM 95.90 89.35 89.01

that our proposed model can effectively classify eye
disease into eight distinct groups, each of which has a
significant difference in score.

After analyzing the proposed-ensemble approach
on the test set, the results were recorded separately
in Table 4 for each of the eight eye disease
classes regarding the accuracy, sensitivity/recall, and
specificity value combinations. The class for diabetic
retinopathy, cataracts, and myopia have the best
accuracy, sensitivity, and specificity values, which are
99.76%, 90.24%, and 91.03%, respectively. Myopia
also achieves the maximum value of 91.03%. The
lowest order, on the other hand, is AMD, Glaucoma,
and Diabetic Retinopathy. However, we achieve
excellent values in all evaluation matrices, indicating
that our proposed technique can detect eye illness
images more accurately.

Table 3 compares the effectiveness of our method
with three pre-trained model types, along with
VGG-16, DenseNet201, and ResNet-50, with our
proposed CNN model to show that it is capable
of classifying the eight eye diseases in terms of
accuracy, sensitivity, specificity, precision, F1-score,
and Kappa score. We can see from this table that the
proposed-ensemble approach outperforms VGG-16,
DenseNet201, ResNet-50, and the proposed CNN with
regards to accuracy (99.96%), sensitivity (87.38%),
precision (92.77%), specificity (86.81%) and kappa
(89.01%) except f1-score. Regarding the f1-score,
our proposed CNN model acquires more scores than
others, which is 89.51%. In addition, we can define
that our suggested CNN model exhibits a comparable
performance with the proposed-ensemble model.

The effectiveness of our ensemble classifier is
assessed and compared to three pre-trained models
(DenseNet201, VGG-16, and ResNet-50) and the
proposed CNN model using the Receiver Operating
Characteristic (ROC) Curve (Junayed et al., 2021a)
to ascertain how well it performs in Fig. 8. The false

positive rate (FPR) and the true positive rate (TPR),
respectively, at various thresholds, are shown along
the x-axis and the y-axis of the ROC curves. The
AUC (area under the curve) shows the identified data
capacity by assessing whether the curve is located up
or down the dashed line. According to the ROC curve,
the highest AUC is achieved by the proposed-ensemble
model which is around 22% (0.959 vs. 0.752), 11%
(0.959 vs. 0.858), 5% (0.959 vs. 0.909), and 4% (0.959
vs. 0.920) more than DenseNet201, VGG-16, ResNet-
50, and proposed CNN, respectively.

Fig. 7 (a) and (b) demonstrate the accuracy as well
as loss during training and validation, correspondingly,
for the optimum number of epochs (80 epochs) and
batch size (32) for our proposed-ensemble technique.
The blue line shows the training results (accuracy
and loss) in Fig. 7 (a, b), while the orange line
represents the results of the validation (accuracy and
loss). Following a total of 80 epochs, the training
accuracy is 97.16%, and the validation accuracy is
96.96%, while the training and validation loss are 0.31
and 0.33.

Table 6: Comparison of three pre-trained models with
the proposed CNN model in various variables (size,
parameters, layers, epochs, run-time, and accuracy).

Variables DenseNet201 ResNet50 VGG16 Proposed CNN
Model Size 77MB 98MB 528MB 27MB
Parameters 20M 25.6M 138M 1.749M
Layers 201 177 41 20
Epochs 200 200 200 80
Accuracy 89.49% 91.20% 90.28% 93.81%

To show the effectiveness of our suggested CNN
model, we display a comparison among three pre-
trained models, i.e., DenseNet201, ResNet50, and
VGG16, and our proposed CNN model in Table
6 regarding various factors (e.g., size, parameters,
and so on). For every model, the feature is set to
100 (randomly). From this Table 6, it can be seen
that our model shows 93.81% accuracy by utilizing
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Fig. 6: A graphical representation of the correctly classified cases using our proposed-ensemble model to detect
eight different types of eye disease.

only 80 epochs; on the other hand, all three pre-
trained models need 2.5 times more (200 epochs). In
contrast, our model size and parameters are only 27
MB and 1.749M, respectively, reflecting our method’s
superiority. Furthermore, even in terms of layers, our
proposed CNN model needs only 20 layers which are
approximately 10 (201 vs. 20), 9 (177 vs. 20), and 2
(41 vs. 20) times less than DenseNet201, ResNet50,
and VGG16. Thus, it can be inferred that our suggested
CNN model plays a critical and unrivaled role in
detecting and classifying the eight various kinds of eye
diseases.

COMPARATIVE STUDIES
Table 5 shows the AUC, F-score, and Kappa score
findings of the ODIR dataset for the proposed

technique and current approaches. According to Table
5, our proposed-ensemble model outperforms others
(Islam et al., 2019; Jordi et al., 2019; Li et al., 2020;
Wang et al., 2020; Gour and Khanna, 2021; He et al.,
2021; Yang and Yi, 2022) in terms of AUC, F1-Score,
and Kappa score. However, all the articles utilized the
pre-trained CNN models for classifying eye diseases
except (Islam et al., 2019; Yang and Yi, 2022). Islam
et al. (2019) suggested a shallow CNN model trained
from scratch for automated ocular illness detection

from fundus pictures, showing quite minimal
performance compared to other existing approaches.

The CNN model we presented has an AUC of
92.00%, and a Kappa score of 88.01%, both of which

are higher than (Islam et al., 2019). Furthermore,
when compared to the Gour and Khanna (2021), our
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Fig. 7: (a) The proposed-ensemble model’s accuracy graph, and (b) its loss graph.

proposed-ensemble model demonstrated around 11%
(95.90 vs. 84.93) and 4% (89.35 vs. 85.57) more

AUC, and F1-Score, respectively. Even our approach
has a more AUC, F1-Score, and Kappa score than the

current approach (Yang and Yi, 2022) ((95.90 vs.
93.00), (89.35 vs. 88.16), and (89.01 vs. 88.67)).
Furthermore, it is essential to highlight that our

proposed CNN model gets more F1-Score than our
proposed-ensemble model (89.51 vs. 89.35).

Table 7: The accuracy results for the comparative
feature selection algorithms (NCA, ReliefF, NCAR,
and mRMR) using Decision Tree (DT), K-Nearest
Neighbor (KNN), Naı̈ve Bayes (NB), Random Forest
(RF), and Support Vector Machine (SVM) classifiers.

Classifiers NCA ReliefF NCAR mRMR
DT 80.15 81.28 81.95 85.35

KNN 78.76 79.87 80.35 84.96
NB 75.85 76.34 76.94 87.90
RF 88.56 88.94 89.34 92.29

SVM 89.28 89.35 89.54 96.96

ABLATION STUDIES

Some ablation studies are investigated to prove
the feasibility of our proposed-ensemble model.
In Table 7, the accuracy is represented for four
feature selection algorithms (NCA, ReliefF, NCAR,
and mRMR) employing five classifiers, including
Decision Tree (DT), Naı̈ve Bayes (NB), K-Nearest
Neighbors (KNN), Random Forest (RF), and Support
Vector Machine (SVM) (Gayathri et al., 2021; Lamba
et al., 2021; Ibrahim and Abdulazeez, 2021). In this
experiment, the number of chosen features is set to 400
for all feature selection techniques. According to Table
7, the SVM classifier outperforms all other classifiers
in terms of performance for all feature selection

techniques. In contrast, the NCAR feature selection
algorithm surpassed all different feature selection
algorithms in terms of performance for all classifiers.
Furthermore, the highest accuracy is achieved by the
SVM classifier and the mRMR method, which is
96.96%. In contrast, the lowest accuracy is obtained
by the NB classifier and the NCA algorithm, which is
75.85%, respectively.

Table 8: The ablation study in terms of accuracy with
or without the mRMR feature selection algorithm

Approaches Features No feature Selection Feature Selection
ResNet50-SVM 1000 0.899 0.912

DenseNet201-SVM 1000 0.871 0.894
VGG16-SVM 1000 0.896 0.902

Proposed model-SVM 1000 0.915 0.938
Proposed-Ensemble-SVM 4000 0.946 0.969

Fig. 8: The efficiency of the ROC curves for the
suggested-ensemble model using three pre-trained
models (DenseNet201, VGG-16, and ResNet-50), in
addition to the proposed CNN model.

Another experiment is carried out with or without
the mRMR feature selection algorithm in Table 8. In
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this experiment, 100 features are assigned to each pre-
trained model and the suggested model out of 1000
features. Similarly, 400 features are chosen randomly
from 4000 features for the proposed ensemble model.
From Table 8, it can be observed that without the
mRMR algorithm, the accuracy is decreased for every
model. For example, without feature selection, the
accuracy of the proposed CNN model has a gap of
2.3% (93.8% vs. 91.5%). Similarly, we can achieve an
accuracy of 96.9% with the suggested ensemble model
by using the mRMR method (without 94.6%). Thus, it
can be concluded that the mRMR method significantly
influences the improvement of classification accuracy.

In Table 9, we display another experiment to
show the effectiveness of our proposed CNN model,
the compelling features, and the proposed-ensemble
model. In this experiment, two, three, and four pre-
trained models, including the proposed CNN model,
are utilized successively. From this experiment, it can
be said that the performance is not as best. Also,
inference time (IT) is higher when we utilize two or
three pre-trained models together (cases 1, 2, 4, and 7)
as compared to when we include our suggested CNN
model (cases 3, 5, 6, 8, and 9). For instance, when three
pre-trained models are ensembled in cases 7, 8, and 9,
the accuracy is still lower, and the IT is higher than
when our suggested CNN model is included (91.74 vs.
95.02 vs. 94.77 and 3.126 vs. 2.089 vs. 2.131). Finally,
in case 10, we integrated our suggested CNN model
with the three pre-trained models and got the highest
accuracy rate of 96.96%. Thus it can be summarized
that our proposed CNN model has more prominent
features; therefore, it demonstrates a more significant
performance than the pre-trained models in terms of
enhancing the accuracy of eye diseases.

FAILURE CASES
Fig. 9 shows a graphical illustration of the

misclassification of images from different types of
eye disease using our proposed-ensemble approach.
Though our algorithm can correctly classify eye
diseases into eight groups with a high score, there
are a few misclassification situations, as shown in
Fig. 9. However, when comparing classifying ratings,
our method offers a few differences in scores (most
of the time, the second-highest score). For example,
the last row image was supposed to be the Diabetic
Retinopathy (DR) class (score showed 34.88%), but
it is classified in the Glaucoma class with a score
of 50.67%. Drawing conclusions from a thorough
examination of the misclassification images, the
suggested approach has difficulty identifying images
with shadows, intense light, poor clarity, or poor image
quality. It will be considered with a large dataset with
more classes in future work.

CONCLUSION

This article introduced an automated deep
learning-based ensemble method to detect and classify
eye diseases from fundus images. In this method, a
deep CNN-based 20 layers model is proposed to lessen
the burden on the computer’s processing power, which
adds the activation function, optimization algorithm,
loss function, kernel sizes, and batch size. The pre-
processing steps, such as CLAHE, Gaussian filter,
and augmentation technique, are applied to remove
the noise and enhance the number of images. Three
pre-trained CNN models are used to compare and
evaluate the proposed CNN model. To investigate
the performance of the proposed model, the ablation
study is performed with different cases. Experimental
findings reveal that the ensemble strategy outperforms
current state-of-the-art approaches in evaluation
matrices. In the future, we want to assess our proposed
CNN method using large-scale datasets to analyze
and modify so that it can identify additional types
of diseases.
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Table 9: The classification accuracy and inference time acquired by our proposed CNN model, three pre-trained
models, and mRMR method

Case Models Features (mRMR) IT (s) Acc (%)
1 DenseNet201+VGG16 (100+100)=200 2.428 90.38
2 DenseNet201+ResNet50 (100+100)=200 2.879 91.15
3 DenseNet201+Proposed CNN (100+100)=200 1.992 93.51
4 VGG16+ResNet50 (100+100)=200 2.779 91.58
5 VGG16+Proposed CNN (100+100)=200 1.762 94.13
6 ResNet50+Proposed CNN (100+100)=200 1.428 94.96
7 DenseNet201+VGG16+ResNet50 (100+100+100)=300 3.126 91.74
8 VGG16+ResNet50+Proposed Model (100+100+100)=300 2.089 95.02
9 ResNet50+DenseNet201+Proposed CNN (100+100+100)=300 2.131 94.77
10 DenseNet201+VGG16+ResNet50+Proposed CNN (100+100+100+100)=400 3.451 96.96

Fig. 9: A graphical representation of the failure cases using our proposed-ensemble model to detect different types
of eye disease.
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