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ABSTRACT 

This paper considers Weber's law and proposes a new non-convex model for images contaminated by 
Gaussian noise and Rayleigh noise. The alternating direction method of multipliers (abbreviated as 
ADMM) is a recent popular method that can handle convex and non-convex problems well. This paper 
compares denoising effect between ADMM and the Euler-Lagrange equation method applied to the non-
convex model. The numerical experimental results show that ADMM performs better and has a higher Peak 
Signal to Noise Ratio. 

Keywords: ADMM, Euler-Lagrange equation, image denoising, multiplicative noise, partial differential 
equation, Weberized total variation. 

INTRODUCTION  
Image processing is a rapidly growing discipline 

that has a wide range of applications in many fields. The 
image has become an effective tool for studying visual 
perception in psychology, physiology, computer science 
and other aspects. In addition, image processing plays a 
pivotal role in scientific research, industrial production, 
medical and health care, education, management and 
other large-scale applications, especially with the rapid 
development of multimedia technology, images and hu-
man life are more inseparable. The fast progress of com-
puter science, the popularity of image digitization and 
image display equipment also provides good conditions 
for the development of image processing and become 
the main driving force for its development.  

Image denoising is one of important problems in 
image restoration, where the key is to remove noise 
while preserving image features such as image edges. 
The total variation image model was originally intro-
duced to solve the image denoising problem. The suc-
cess of the total variation denoising model lies in the uti-
lization of the inherent regularity of the natural image, 
which can easily reflect the geometric regularity of the 
real image, such as the smoothness of the boundary 

Compared to additive Gaussian white noise, multi-
plicative noise still conforms to Rayleigh or Gamma dis-
tribution functions. Multiplicative noise is a serious con-
tamination to the image, and it is difficult to process 
multiplicative noise images effectively because of the 

sharp fluctuations and low uniformity of multiplicative 
noise. Therefore, multiplicative noise is chosen to be re-
moved. (Wu et al., 2008) 

Let u  be the original clear image, f  be the ob-
served image contaminated by noise and v  be noise. 
The noise model can be expressed as 

vuf ⋅=     (1) 

Most traditional image processing methods rarely 
take into account the influence of human visual psychol-
ogy. The Weber's law suggests that human reaction and 
perception to visual signal intensity fluctuations are ob-
tained by weighting the background stimulus rather than 
being apparently uniform. In this paper, an attempt is 
made to develop an image recovery model aiming to use 
one of the most famous psychological results, namely 
Weber's law. Its main mathematical properties, such as 
existence and uniqueness, are investigated, as well as the 
computational method of the associated nonlinear par-
tial differential equations. (Shen, 2003) 

Weber's law was first proposed (Weber, 1834) in 
1834. It was later rationally elaborated by Fechner . This 
law reveals the general effect of human sensitivity to in-
tensity increment uδ  under background stimulus u , 
i.e., JND (just-noticeable-difference). The Weber frac-
tion is a constant: const

u
u

=
δ . 

Many experiments have shown that for a large range 
of stimulus u , Weber's law does provide a good approx-
imation. Applying Weber's law in visual perception, u  
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representing background light intensity, uδ  represents 
intensity fluctuation. 

There are many methods to process image models, 
such as the Euler-Lagrange equation method, nonlinear 
inverse scale space methods, and Bregman iterative reg-
ularization algorithms. In this paper, we will use ADMM 
to process the model. 

The structure of this paper is as follows. Some pre-
liminaries about model and alternating are summarized, 
in Section Introduction. In Section Material and Meth-
ods, we propose a new non-convex model, and prove the 
uniqueness of the existence of the minimum value. 
Then, the calculation method of Weberized total varia-
tion minimization is discussed. In Section Results, nu-
merical experimental results are given. Finally, we give 
some conclusions in Section Discussion. 

Model review 
In this subsection, we briefly review the classical 

multiplicative noise cancellation problem and the We-
berized total variation restoration  

Classical multiplicative noise model 

In 2003, Rudin, Lions, and Osher (Rudin et al., 
2003) firstly proposed the total variation model with 
multiplicative noise removed, which is a multiplicative 
version of the ROF model. We call it the RLO model. In 
this model, the noise image can be expressed as 

vuf ⋅= . Given two constraints that the mean of noise 
v  is 1 and the variance is 0. Minimizing ∫Ω ∇u  under 

these two constraints, the RLO model is obtained as fol-
lows: 

( ) dx
u
f

u
fdxuuE

2

1∫∫ ΩΩ






 −++∇= µλ .   (2) 

The RLO model is a classical total variation model 
for Gaussian multiplicative noise. The model can re-
move the Gaussian multiplicative noise to some extent. 
However, because the model is proposed by combining 
the statistical properties of Gaussian multiplicative 
noise, it is not universal to other multiplicative noise. 

As the research progressed, researchers gradually 
found that most multiplicative noise obeys the gamma 
distribution rather than the Gaussian distribution. In 
2008, Aubert and Aujol (Aubert and Aujol, 2008) as-
sumed that the noise is gamma noise with mean 1, de-
rived a data fidelity term based on the maximum a pos-
teriori estimate. They proposed a non-convex model for 
removing gamma noise, called as AA model, 

( ) dx
u
fudxuuE ∫∫ ΩΩ






 ++∇= logλ    (3) 

And a sufficient condition for the existence of unique-
ness of this model is given, ( )fu 2,0∈ . 

The AA model can effectively remove gamma mul-
tiplicative noise. However, the fidelity term of the AA 
model is non-convex, which is prone to block effect in 
the denoising process and the denoising effect is poor. 

Shi and Osher (Shi and Osher, 2008) used the cor-
responding relaxed inverse scale spatial flow as a de-
noising technique and used the data fidelity term of the 
AA model. The regular term part is 

BV
logu  instand 

BV
u . They proposed a convex variational model called 

as SO model: 

( ) ( ) dxwbaefbafedxwwE ww∫∫ Ω

−−

Ω 



 ++++= 22

2
λ , (4) 

where ( )uw log= . 

Inspired by the AA model, in 2010, Steidl and Teu-
ber evolved the I-divergence model (Steidl and Teuber, 
2010). I-divergence is called the generalized Kullback-
Leibler divergence. The I-divergence of  𝑓𝑓  and u  is 

( ) ∫Ω 





 +−= dxuf

u
fufufI log, . Since f  is the ob-

served image, neglecting the constant term reduces to
( )∫Ω − dxufu log . The model takes the generalized I-di-

vergence, as the fidelity term and the full variance as the 
regular term, and the mathematical expression is as fol-
lows: 

( ) ( )∫∫ ΩΩ
−+∇= dxufudxuuE log     (5) 

In this paper, we will propose a new model based on 
RLO model, I-divergence model and Weber’s law. 

Weberized total variation restoration 

Most traditional image restoration models do not 
consider that the visual sensitivity of local fluctuations 
depends on the intensity of the ambient level. If the local 
variation is 0.01 and the background intensity is 0.1, the 
fluctuation level is more significant than when the back-
ground intensity is 0.8. 

In 2003, Jianhong Shen (Shen, 2003) combined 
Weber's law with the ROF model and proposed the We-
berized classical total variation model with removal of 
additive noise: 

( ) ( )∫∫ ΩΩ
−+

∇
= dxfudx

u
u

uE 2

2
λ      (6) 
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In 2010, Lili Huang, Liang Xiao and Zhihui Wei 
(Xiao et al., 2010) proposed a multiplicative noise re-
moval model based on Weber's total variation regulari-
zation: 

( ) ∫∫ ΩΩ






 ++

∇
= dx

u
fudx

u
u

uE logλ     (7) 

this model combines Weberized total variation restora-
tion with the AA model. 

Distributed ADMM 
ADMM is an effective method to solve decompos-

able convex or non-convex optimization problems. 
First, ADMM can decompose the objective function of 
the original problem into some resolvable sub-problems. 
Each subproblem is then solved in parallel. Finally, the 
solution of the coordinated subproblem yields a global 
solution to the original problem. This decomposition of 
dividing the original problem into sub-problems is par-
ticularly important and productive for solving large-
scale problems (He, 2018). Glowinski and Marrocco 
proposed ADMM in 1975, firstly. It was revisited and 
proved to be applicable to large-scale distributed optimi-
zation problems by Boyd et al. in 2011. This had led to 
the widespread use of ADMM in engineering applica-
tions (Glowinski and Marrocco,1975; Gabay and Mer-
cier, 1976; Boyd et al.,2011). In China, Prof. Bingsheng 
He has made outstanding contributions to the research 
and application of ADMM (Shi et al., 2014). Currently, 
ADMM is one of the most frequently used methods for 
solving total variational regularization models in the im-
age processing field. (Li and Li, 2021; Wei, 2020; Wu 
et al., 2017; Xiang and Wei, 2020; Chang et al., 2016) 

Consider the following optimization problem (He, 
2018), 

cBxAxts
zgxf

zx

=+

+

..
)()(min

, ,   (8) 

where YXBAYcXzx →∈∈ :,;;, , YX ,  is Banach 
space. 

The augmented Lagrange function corresponding to 
the constrained optimization problem equation (8) is 

2

2

2

2 22
)()();,( wwcBzAxzgxfwzxL µµ

−+−+++=  (9) 

where Yw∈  is the Lagrange multiplier and 0>µ  is a 
sufficiently large penalty parameter. 

Minimization of the augmented Lagrange function 
using the alternating iteration method, and then the fol-
lowing ADMM iteration format can be obtained ( Nishi-
hara et al., 2015; Wang ei al., 2015; Zhang et al., 2010), 

)(
);,(minarg

);,(minarg

111

11

1

cBzAxww
wzxLz

wzxLx

kkkk

kk

z

k

kk

x

k

−++=

=

=

+++

++

+

. (10) 

MATERIAL AND METHODS 

Proposed model for image restoration 
As mentioned in Introduction, the regular term of 

the existing Weberized total variation restoration model 
uses Weber's law and the fidelity term is the AA model. 
The AA model is prone to block effect in the denoising 
process, and the effect is not good, so we combine the 
Weberized total variation restoration model with the I-
divergence model. The new model is: 

( ) ( )∫∫ ΩΩ
−+

∇
= dxufudx

u
u

uE logλ   (11) 

Due to the ordinary least squares energy control in 
( )uE , we assume that ( )Ω∈ 2Lf . As a result, ( )Ω∈ 2Lu . 

Throughout the paper, we also assume that Ω  is a Lip-
schitz open domain with a finite Lebesgue measure 

∞<Ω . The following natural admissible space for the 
Weberized TV restoration (Shen, 2003) 

( ) ( ) ( ){ }∞<Ω∈>=ΩΠ uLuu lnTV,0 2
  

The model consists of two parts. The first term at 
the right end of the equation is the regular term, which 
is composed of the Weberized total variation of the im-
age in the model proposed in this paper, and it can pro-
vide a priori information about the original image. The 
second term is the fidelity term, which is derived from 
the constraint or derivation principle and mainly guaran-
tees the closeness of the denoised image to the original 
image. In this paper, we hope that while noise removal 
is performed on the image, the denoised image and the 
observed image can be as consistent as possible in terms 
of information other than noise, and the difference be-
tween the two outside of noise signal interference is 
minimized. We hope that information loss is minimized. 
Based on this, Ⅰ-divergence is a good measure that can 
reflect the information loss between the recovered image 
and the received image very precisely. Therefore, it is 
possible to minimize the information loss by minimizing 
the Ⅰ- divergence, which is also in line with the idea of 
model construction of the minimized energy generaliza-
tion in the variational method. 

𝜆𝜆 is the regularization parameter. The function of 
the regularization model is to suppress the amplification 
of noise and estimate the image stably, while the optimi-
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zation model often contains data fidelity terms and a pri-
ori regularization terms, and the function of the regular-
ization parameter is to balance the data fidelity terms 
and a priori regular terms. Mathematically, the solution 
𝑢𝑢 of the model is the canonical solution and is related to 
the parameter 𝜆𝜆. As the parameter 𝜆𝜆 gradually increases, 
the regularization penalty becomes smaller and the 
smoothness (regularity) of the obtained solution gradu-
ally decreases. However, as the parameters gradually in-
crease, the effect of the data fidelity term increases and 
the regularized solution will be close to the original ob-
served image.  

At the right side of the equation, the first term is the 
regular term which is non-convex and

dx
u
u

u ∫Ω
∇

=)(logTV (Shen, 2003). The second term, 

which is the fidelity term is convex. Therefore, Eq. (11) 
is a non-convex model. Convexity not only has good ge-
ometric properties, such as support and separation 
planes, but also has good global analytical properties. In 
convex optimization problems, the local optimal solu-
tion is the global optimal solution, while non-convex op-
timization problems do not have this property. There-
fore, the non-convex model will have the case that there 
is no global optimal solution when solving for the extre-
mum. 

The existence and uniqueness of the solution of 
Eq. (11) is proved below. 

Existence of Weberized total variation res-
toration 
In order to prove the existence of the solution of the 

optimization Eq. (11), the proof of boundedness of the 
solution is given first. 

Lemma 1(Boundedness) Let )(Ω∈ ∞Lf  and 
0inf >Ω f , then the optimization problem Eq.(11) has a 

solution û , and fuf ΩΩ ≤≤ supˆinf . 

Proof. Define fΩ= infα , fΩ= supβ . If fu > , 
ufu log−  strongly increasing. Then 

∫ ∫Ω Ω
−≤− dxufudxufu )log())),log(inf(),(inf( ββ . (12) 

In addition, according to Lemma 1 in (Kornprobst, 
1999), there are 

)(TV)),(inf(TV uu ≤β  and 
)(logTV))),(log(inf(TV uu ≤β . (13) 

Combine (12) and (13), 

)()),(inf( uEuE ≤β .  (14) 

If and only if, β≤u the equation holds. 

Since û  is the minimum solution of problem 
Eq.(11), the equation holds when uu ˆ= , thus β≤û . 

Similarly, it is obtained that 

)),(sup()( αuEuE ≤ ,   (15) 

thus α≥û . This completes the proof. 

Theorem 1 (Existence) Assume that )(Ω∈ ∞Lf  
and 0inf >Ω f , then the optimization problem Eq.(11) 
has at least one solution in its solution space )(Ω∏ . 

Proof. Define fΩ= infα , fΩ= supβ . Notice that 
)(Ω∏∈≡ βu , thus the solution space is non-empty 

(Shen, 2003). Consider the sequence of minimizations 
of the optimization problem { } )(Ω∏⊂nu . According to 
Lemma 1 (boundedness), it has βα << nu . Then 

dxudx
u
u

n
n

n ∫∫ ΩΩ
∇≥

∇
β
1

  

Because { }nu  is a bounded sequence in the Banach 
space ( ) ( ) ( ){ }∞<Ω∈=Ω fandLff TV:BV 1  endowed 
with the BV norm ( )fff

L
TV1BV

+= .  

And since Ω  is bounded, then 

+∞<
Ω)(1Lnu     (16) 

Moreover, by the definition of minimization se-
quence { }nu , we know that there exists a constant 0>C , 
let CuE n ≤)( . Since ∞<)(logTV nu , dxufu nn∫Ω − )log(  

reaches a positive minimum ∫Ω − dxfff )log(  when 

fun = . We have  

Cun ≤)(TV .    (17) 

From Eq. (16) and (17), it can be shown that 𝑢𝑢𝑛𝑛 is 
consistently bounded in )(BV Ω  space with respect to 
n . By the tightness of )(BV Ω  space, there exist sub-
columns in { }nu  (still denoted by { }nu  for convenience) 
and functions u  in )(BV Ω  space such that { }nu  con-
verges strongly to u  in )(1 ΩL  space. Further, assume 
that 

)()( xuxun → ， Ω∈xea .. . 

Because of Lebesgue's control convergence theorem, 
we have 

∫ ∫Ω Ω∞→
−=− dxufudxufu nnn

)log(lim)log( .  (18) 

Let nn uv log= ， uv log= ，then 

)()( xvxvn → ， Ω∈xea .. . 
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Assume that ( ) ),(, 21
021 RCppp Ω∈=

  is a Vector-
valued function and 12

2
2
1 ≤+= ppp , then  

pvpvn

⋅∇→⋅∇ ， ppvn


⋅∇≤⋅∇ βlog Ω∈xea .. .  (19) 

Since p  has a compact support, the left end func-
tion of inequality Eq.(19) belongs to the )(1 ΩL  space. 
Because of Lebesgue's control convergence theorem, 

∫∫ Ω∞→Ω
⋅∇=⋅∇ dxpvdxpv nn

 lim .   (20) 

Eq.(20) takes the upper exact bound on p , 

∫∫ Ω∞→Ω
∇≤⋅∇ dxvdxpv nn

inflim .   (21) 

We have (Enrico, 1983) 

∫∫ Ω∞→Ω
∇≤∇ dxvdxv nn

inflim .  (22) 

Combine Eq.(18) and (22),  

)(inflim)( nn
uEuE

∞→
≤ . 

It has )(Ω∏∈u . Since nu  is the minimization se-
quence, u  is the minimum solution of the optimiza-
tion problem Eq.(11). This completes the proof. 

Uniqueness of Weberized total variation 
restoration 
According to optimization theory, when the objec-

tive function is strictly convex and forcing, there has a 
unique minimum solution for the fixed solution prob-
lem (Aubert and Kornprobst, 2006). The objective 
function )(uE  in the optimization problem Eq. (11) 
contains a non-convex negative log  likelihood func-
tion and a Weberized total variation regular term, so 

)(uE  is non-convex. And thus the uniqueness of the 
solution cannot be derived directly from the convexity 
of the objective function. The Euler-Lagrange equation 
of the optimization problem Eq. (11) is used below to 
prove the uniqueness of its solution. 

Theorem 2 (Uniqueness) Assume that )(Ω∈ ∞Lf ,
0>f  and 0>λ . The solution to the optimization 

problem Eq. (11) is u .Then u  is unique. 

Proof. Due to the Lemm2 in (Shen, 2003), the so-
lution u  of the optimization problem Eq. (11) satisfies 
the following Euler-Lagrange equation, 

Ω∂∈=
∂
∂

=












∇
∇

∇−





 −

x
n
u

u
u

uu
f

,0

011



λ
   (23) 

u
un

∇
∇

=
  is normal vector of Ω∂ . Since 0>u , 

Eq.(23) can be equivalently rewritten as 

Ω∂∈=
∂
∂

=−+
∇
∇

∇−

x
n
u

fu
u
u

,0

0)()(



λ
  (24) 

At each fixed pixel Ω∈x , and define a cubic potential 
of u  by )(' fuF −= λ  

Then 

λ

λ

=

−=

''

)
2

(
2

F

fuuF  

It is easy to deduce that when 0>λ , 0'' >F , and 
thus F  is a strictly convex function. 

A new reference objective function can be defined 
from )(uE  as follows 

∫Ω −+∇= dxfuuuuEr )
2

()(
2

λ . 

It is easy to prove that Eq.(24) is exactly the Euler-
Lagrange equation for )(uEr  . Since the TV Radon 
measure is semi-convex, the objective function )(uEr  
has global strict convexity, and thus there has a unique 
minimum solution. The original objective function 

)(uE  also has a unique minimum solution. This com-
pletes the proof. 

The computational approach 
In this section, we will solve the model proposed 

in this paper with the numerical solution of Euler-La-
grange equations and ADMM. 

Numerical solution of Euler-Lagrange equation 
method 

This method is the classical method for image de-
noising. 

We first obtain the Euler-Lagrange equation of the 
form Eq.(11) as follows: 

011 =












∇
∇

∇−





 −

u
u

uu
fλ    (25) 

or equivalently: 
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0)()( =−+
∇
∇

∇− fu
u
u λ .    (26) 

The corresponding diffusion equation is 













∇
∇

+





 −−=

∂
∂

u
u

uu
f

t
u 11λ .   (27) 

Define a new reference energy for 𝐸𝐸𝑟𝑟(𝑢𝑢)as fol-
lows: 

∫Ω −+∇= dxfuuuuEr )
2

()(
2

λ
 

(28) 

It is easy to derive that Eq. (25) is exactly the Eu-
ler–Lagrange equation for Eq. (28). Eq. (11) and 
Eq. (28) have the same Euler-Lagrange equation. The 
solution of the model Eq. (11) is also the solution of 
the optimization model Eq. (28). The optimization 
model Eq. (28) has a unique solution that satisfies 
Eq. (25). Therefore, the models Eq. (11) and Eq. (28) 
are equivalent. Eq. (28) can be viewed as an alternative 
function of the Weberized total variation regularization 
minimization problem Eq. (11). Eq. (28) is strictly con-
vex and therefore has a unique minimizer. The problem 
of finding the minimizer of Eq. (11) can be converted 
to finding the minimizer of Eq. (28). 

The Euler-Lagrange equation is solved as follows. 

First, the image is discredited by the central differ-
ence in half-point format to an eight-neighborhood sys-
tem. h  denotes the step size of the grid, and h  is 1 in 
the iteration. t∆  denotes the time step of the iteration. 
The difference form of the derivative of the pixel point 
at ( )ji ,  with respect to the auxiliary variable time t  
can be obtained as shown in Eq. (29). 

( ) ( )
t

jiujiu
t
u nn

∆
−

=
∂
∂ + ,,1

 
(29) 

Combine Eq. (27) and (29), it can be concluded 
that 

( ) ( )





















∇
∇

∇+





 −−=

∆
−+

u
u

uu
f

t
jiujiu nn 11~,,1

λλ
 
(30) 

where λ
~

 is the proportionality factor. 

According to Eq. (30), the iterative form of the 
Weberized total variation noise removal model when 
solved using the time stepping method can be obtained 
as shown 

( ) ( ) ( ) ( )
( )

( ) 











+∇
+







−−∆+=+

1,

,
,

1
,

1,, 21
1

n

n

nn
nn

jiu

jiu
jiujiu

ftjiujiu ζζλλ

(31) 

where λλλ ⋅=
~

1  and λλ
~

2 = . 

There are also subtle differences between the reg-
ular terms of the noise removal model in the theoretical 
expression and in the iterative form. In the theoretical 
expression, the denominator of the regular term is u∇ . 
While in the iterative form, the denominator of the reg-
ular term is 1+∇u . This is due to the fact that during 
the experiment, it was found that the gradient mode of 
the image would have a small value, when the com-
puter would process it directly to 0 and a pathological 
situation would occur. Therefore, for the sake of im-
proving the regularity of the model, the denominator is 
added by one to avoid the above mentioned problems 
in the iterative process, and this improvement has been 
found to be effective and reasonable through experi-
ments. 

The steps to solve the model equation Eq. (11) 
with Euler-Lagrange equation are as follows. 

 
Euler-Lagrange equation method for the model 

Initialize: fu =0
,  

Parameter: 1λ , 2λ  
For nk :1= , n  is the number of iterations 

update  
1+ku  by Eq.(31),  

if nk = , 
break 

End 

Using the ADMM to the model 

This part uses the ADMM for solving the model 
proposed in Material and Methods. 

Based on the format of the optimization problem, 
Eq. (8) is solved by the ADMM method. The total var-
iation image recovery regularization model Eq. (11) 
can be equivalently rewritten by introducing the varia-
ble 𝑑𝑑 as 

d
u
u

ts

ufudxd
du

=
∇

−+∫Ω
..

log
2

min 2

2,

λ

.   (32) 

The corresponding augmented Lagrange function 
is 

2

2

2

2

2

2 22
log

2
);,( zzd

u
u

ufudxdzdxL µµλ
∫Ω −+−

∇
+−+=

(33) 

where XXzzz yx ×∈= ),(  is Lagrange multiplier, and 

0>µ  is a penalty parameter. 
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From this, ADMM iteration format can be con-
structed as 

)(:

2
minarg:

2
log

2
minarg:

1
1

1
1

2

2

1

1
1

2

2

2

2
1

+
+

+
+

+

+

Ω

+

+

−
∇

+=−

+−
∇

+=−

+−
∇

+−=−

∫

k
k

k
kk

k
k

k

d

k

u

kk

u

k

d
u
u

zzsubproblemz

zd
u
u

dxddsubproblemd

zd
u
u

ufuusubproblemu

µ

µλ

(34) 

For the solution of the u-subproblem, the discrete 
case is equivalent to solving the following equation (Li 
and Li, 2021) 

)()()( **1* k
y

k
yy

k
x

k
xx

k zdzdfuI −∇+−∇+=∇⋅∇+ + µµλµλ
(35) 

Fourier transform on both sides of Eq.(35) simul-
taneously 

))()()()(()(

)()))()()()(((
**

1**

k
y

k
yy

k
x

k
xx

k
yyxx

zdFFzdFFfF

uFFFFFI

−∇+−∇+=

∇∇+∇∇+ +





µλ

µλ

(36) 

where F  is discrete Fourier transform,   is dot prod-
uct operations between matrices and I  is 1-pattern ma-
trix. 

Can be solved using Fourier inversion transform 
Eq.(36) as 
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(37) 
The d-subproblem can be solved analytically using 

a soft threshold operator,  
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where 
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The steps to solve the model Eq.(11) with ADMM 
are as follows 

 
ADMM for the model 
Initialize: fu =0 , )0,0(),( 000 == yx ddd , 

)0,0(),( 000 == yx zzz  
Parameter: 1=λ , µ , tol  
For MaxIterk :1=   
update 1+ku  by Eq.(37)  

1+kd  by Eq.(39) 
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break 
End 

RESULTS 

Evaluation methods and noise image 
There are two methods for noise removal. One 

method is the subjective evaluation method, and the other 
method is the objective evaluation. As the name implies, 
the subjective evaluation method refers to the evaluation 
of noise removal through direct observation by the ob-
server. This type of method is intuitive and convenient, 
but it is often difficult to identify the advantages and dis-
advantages of noise removal when higher accuracy is re-
quired for analysis and comparison. At this point, the ob-
jective evaluation method is necessary. The objective 
evaluation method refers to the evaluation of image noise 
removal with quantifiable indexes. There are many such 
quantitative indicators, and this paper mainly uses the 
peak signal-to-noise ratio to evaluate the image noise re-
moval situation. Let the size of the image be NM ×  size, 
then the Peak Signal to Noise Ratio (PSNR) is defined as 
follows: 
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where û  refers to the restored image and u  refers to the 
original image. The PSNR can reflect the difference be-
tween the two images. The larger the PSNR, the smaller 
the difference between the two images. 

For the problem of similarity between the denoised 
image and the original image, the aspects of image detail 
retention and color difference will be evaluated relatively 
subjectively in combination with PSNR. 

In next subsection, experiments are performed with a 
"Lena" image of size 369×369. Gaussian multiplicative 
noise is added, as in Fig.1. The probability density func-
tion of Gaussian noise is 

( ) ( )







 −
−= 2

2

2
exp

2
1

σ
µ

σπ
xxp  

In this paper, the noise parameter is 1=µ ，
1.0=σ . After adding noise, the gray value of the point 

(40,40) is 182.7083 and the PSNR of image is 25.6485. 

 
(a) (b) 

Fig. 1. Lena (a)the original (b) add Gaussian noise 

Numerical experiments on the solution of 
Euler-Lagrange equation method 
First, let the number of iterations be 200 and experi-

ment for different parameters, and compare the grayscale 
value of the point (40, 40) and the PSNR of image after 
denoised. The results are shown in Table 1 and Fig.2 is 
more intuitive. 

Table 1. Denoising effect of different parameters when 
the number of iterations is 200 

𝜆𝜆1 𝜆𝜆2 Gray value PSNR 
10 10 179.9137 26.6139 
10 100 166.8813 30.8723 
10 200 162.4177 32.1859 

100 10 182.3758 25.7947 
100 100 179.6093 26.8804 
100 200 176.9864 27.8194 
200 10 182.5414 25.7225 
200 100 181.0966 26.3188 
200 200 179.6093 26.8807 

It can be seen that the best result is obtained with 
200,10 21 == λλ . Next, fixing the parameters as 
200,10 21 == λλ , and experiment for different iterations. 

As shown in Fig.3, with the increase of the number 
of iterations, the denoising effect gradually increases and 
the degree of increase decreases. It can be seen that the 
PSNR will show a stable state after many iterations during 
the iterative process. Therefore, it is concluded that the 
denoising effect will become better and better as the num-
ber of iterations increases, while it tends to be stable. 

 
Fig. 2 Denoising effect of different parameters when the 
number of iterations is 200 

 
Fig. 3. Denoising effect with different iterations when 
𝜆𝜆1 = 10, 𝜆𝜆2 = 200. 

Next, the denoising effect is examined by visual ob-
servation. Fig.4 shows the image after denoising. It can 
be seen that there are better effects, but the image details 
need to be further improved. It can be intuitively seen that 
this method has a better denoising effect, and the denoised 
image is significantly smoother and the edges and details 
are better preserved compared with the noisy image. After 
increasing the number of iterations to 400, the continued 
increase does not significantly improve the denoising ef-
fect, but the image details need to be further improved. 
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(a) (b) (c) 

Fig. 4. Denoising image when 𝜆𝜆1 = 10, 𝜆𝜆2 = 200 (a) iteration is 100 (b) iteration is 200 (c) iteration is 400. 

 

Numerical Experiments on the solution of 
ADMM 
Continue the experiment with the noise picture of 

Fig.1. When 310−=tol , different values of the parame-
ter µ  are taken for denoising, and compare PSNR. The 
results are as follows. 

 
Fig. 5 Different values of the parameter 𝜇𝜇 are taken for 
denoising. 
 

 
Fig. 6 Different values of the parameter 𝜇𝜇 are taken for 
denoising. 
 

Table 2. Runtime and PSNR of different tol 
𝑡𝑡𝑡𝑡𝑡𝑡 Time(s) PSNR 

10−1 0.4848 45.95 
10−2 0.6708 33.57 
10−3 1.1747 33.55 
10−4 1.8518 33.58 
10−5 2.2178 33.58 

According to Fig.5, it can be seen that the the larger 
the µ , the larger the PSNR. Keep trying  100=µ . As 
shown in Fig.6, the PSNR increases substantially. It is 
preliminarily speculated that the larger µ  is, the better 
the denoising effect will be. With fixed µ , experiments 
were carried out under different tol  conditions, as 
shown in Table 2. According to Table 2, the larger the 
tol  the longer the run time, and PSNR tends to stabi-
lize. When 110−=tol  , PSNR reaches its maximum. It is 
further examined by visual observation whether there 
exists a better denoising effect when µ  is larger or tol  
is larger.  

Compare (a), (b), and (c) in Fig.7. When 20=µ , 
image details are not preserved and many textures dis-
appear. When 100=µ , noise is still present in the image 
and denoising effect is not good. The best result is ob-
tained at 50=µ . Compare (b) and (d) in Fig.7. It can be 
seen that when tol is too large, the PSNR is large but 
the denoising effect is not good. Compare (b) and (e). 
The difference of denoising effect is not obvious. Con-
sidering the denoising effect and the running time, tol  
is selected as 310− . 

ADMM is better for removing Gaussian multiplica-
tive noise. Noise can be removed, image details are well 
preserved, and step effects are avoided. The image after 
ADMM denoising is intuitively more detailed. 

Comparison of the two algorithms 
In this subsection, we compare the Euler-Lagrange 

equation method with the ADMM. 

For a more direct and objective comparison, this 
part of the experiment was compared on synthetic im-
ages. Fig. 8 shows the noise removal for the synthetic 
image. Fig.8 (a) shows the original figure. (c) is the 
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(a) (b) (c) 

  
                  (d)                 (e) 

Fig. 7. (a) 310,20 −== tolµ , (b) 310,50 −== tolµ , (c) 310,100 −== tolµ , (d) 110,50 −== tolµ , 
 (e) 110,50 −== tolµ . 

    
(a) (b) (c) (d) 

Fig. 8. (a) the original, (b) add Gaussian noise, (c) Euler-Lagrange equation, (d) ADMM. 

 

denoising by the partial differential equation method 
with the parameters 11 =λ  , 102 =λ , and the iteration is 
10, at which time the best results are obtained under the 
partial differential equation method. (d) is the denoising 
by the ADMM method with parameter 310,50 −== tolµ . 
ADMM has better denoising effect than the Euler-La-
grange equation method, while the brightness is closer 
to the original image. 

The composite image is further studied. To show the 
restored abilities, we choose the 80th line of the original 
image of composite image and the restored image as 
shown in Fig.9. In order to observe the denoising effect 
in more details, we take a part of the original image and 
make 3D images for noise image and restored images. It 
is shown in Fig.10. 

It can be seen that the denoising effect of ADMM is 
better. The denoised image is smoother and closer to the 
original image. 

 
Fig. 9. The 80th line of the restored of composite image 
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Next, change the noise type. In Fig.11, add Rayleigh 
noise, which is common in medical noise images, to the 
image and observe the denoising effect. Its probability 
density is given by the following equation, 
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The noise parameters are 0=a ， 03.0=b . In Fig.11, (c) 
with parameter 101 =λ , 2002 =λ  and 200 iterations. (d) 
is the ADMM method for denoising with parameter 

310,50 −== tolµ . 

It can be seen that ADMM is effective for Rayleigh 
noise, but the picture brightness is not recovered. The 

Euler-Lagrange equation method works better than 
ADMM. Therefore, our model used in the field of med-
ical imaging needs to be further investigated. 

Discussion 
In this paper, we study a new non-convex varia-

tional model in the Weberized total variation regulariza-
tion framework for the multiplicative noise removal 
problem. The new nonconvex model is obtained by 
combining the Weberized total variation regularization 
term and the I- divergence fidelity term. The existence 
of the model solution is proved and there is a unique so-
lution. Euler-Lagrange equation method and ADMM are 
used to denoise the images respectively. ADMM outper-
forms. 

 
Fig. 10. 3D images for noise image and restored images. 

 

    
(a) (b) (c) (d) 

Fig. 11. (a) the original, (b) add Rayleigh noise, (c) Euler-Lagrange equation, (d) ADMM. 
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