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ABSTRACT

Healthcare systems worldwide are burdened by mosquitoes transmitting dangerous diseases. Conventional
mosquito surveillance methods to alleviate these diseases are based on expert entomologists’ manual
examination of the morphological characteristics, which is time-consuming and unscalable. The lack of
professional experts brings a high necessity for cheap and accurate automated alternatives for mosquito
classification. This paper proposes an end-to-end deep Convolutional Neural Network (CNN) for mosquito
species classification by taking advantage of both dropout layers and transfer learning to enhance performance
accuracy. Dropout layers randomly disable the neurons of the neural network, mitigating co-adaptation
and data overfitting. Transfer learning efficiently applies the extracted features from one dataset to others.
Furthermore, a Region of Interest (ROI) visualization component is adopted to gain insight into the model
learning. The generalization ability and feasibility of the proposed model are validated on four publicly
available mosquito datasets. Experimental results on these datasets with an accuracy of 98.82%, 98.92%,
94.66%, and 98.40% demonstrate the superiority of our proposed system over the recent state-of-the-art
approaches. The effectiveness of different numbers of dropout layers, their positions in the network, and
their values are all investigated through ablation studies. Visualizing the model attention confirms that useful
mosquito features are learned from insect legs and thorax through our model leading to optimistic predictions.

Keywords: Convolutional neural networks, mosquito classification, transfer learning, vector mosquitoes.

INTRODUCTION

Mosquitoes are tiny creatures with more than
3600 species, among which a few dozen are vectors
of deadly diseases such as malaria, dengue, yellow
fever, and chikungunya. These diseases cause over
one billion infections and around one million deaths
worldwide annually Organization et al. (2017);
Omodior et al. (2018), making mosquitoes the
deadliest animals in the world Gates (2014). Aedes,
Anopheles, and Culex are considered as the most
dangerous genera Roth er al. (2014); Kittichai
et al. (2021a). These mosquitoes are found in
almost every region of the world, and their female
gender transmits the diseases by injecting infected
saliva into human hosts. To prevent and minimize
the distribution of mosquito-borne diseases and
assist health authorities, it is beneficial to identify
and classify the disease-spreading mosquitoes and
monitor their populations. Vector control programs are
fundamentally carried out using manual microscopic
observations through which the insects are identified
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by morphological and dichotomous keys Rueda
(2004); Park et al. (2016); Eritja et al. (2019).
However, these conventional methods are required
by a highly professional entomologist leading to a
time-consuming, laborious, barely scalable, and costly
process that is infeasible for practical implementations.
Recently, it has become even more challenging due to
the lack of experts compared to the extreme increment
in mosquito diversity and populations Audisio
(2017). Furthermore, the external morphological
characteristics are susceptible to damage during
sample acquisition, preservation, or transportation
so mosquito identification is challenging even for
professionals Mewara ef al. (2018).

Molecular-based methods such as polymerase
chain reaction Clapp (1996), ELISA, and DNA-
barcoding Wang et al. (2012); Beebe (2018);
Mee et al. (2021) are another practical alternative
for identifying and classifying mosquitoes but are
also impractical in real-world applications as they
follow slow procedures, require expensive technical
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equipment, and are performed by molecular biology
experts Kittichai er al. (2021a). These limitations
inspired researchers to develop automated systems to
classify mosquito species. The prior frequency-based
automated mosquito surveillance systems analyzed
wingbeat harmonics using acoustic recorders Jackson
and Robert (2006); Silva et al. (2013); Arthur et al.
(2014); Ouyang et al. (2015a); Mukundarajan et al.
(2017). Despite their high classification accuracy, these
devices suffered from limited storage memory, short-
distance operational ranges, and dependence of the
data acquisition procedures to the position of the
recorder concerning the mosquitoes.

Consequently, vision-based methods have been
extensively applied to deal with these challenges in
the last five years. These approaches are generally
divided into two main categories: 1) conventional
machine learning (ML)-based approaches and 2)
deep learning (DL)-based approaches. In conventional
approaches, the handcrafted features are first
extracted, then fed into the ML-based classifiers for
mosquito identification Ouyang et al. (2015b); Reyes
et al. (2016). Although they achieved successful
performance, their accuracy is not still satisfactory
for real-world applications. Furthermore, they have
low generalization ability as the extracted features,
so the model’s performance is significantly affected
when the dataset is changed. Thanks to recent
advances in developing powerful GPUs and large-
scale datasets, DL-based models such as convolutional
neural networks (CNNs) have been extensively
applied to numerous computer vision tasks, including
mosquito identification and classification. However,
they also suffer from some limitations restricting their
applicability in real-world scenarios: i) they obtained
satisfactory performance for the images acquired in
a laboratory under environmental constraints Park
et al. (2020); Goodwin et al. (2021), ii) even for
those datasets, their accuracy still is not in the human
expert level Motta et al. (2019), and iii) they have poor
generalization capability as they are only validated on
a limited number of datasets (mostly a single dataset)
Park ef al. (2020); Rustam et al. (2022).

To address these issues, a novel deep CNN
(DCNN) model is proposed to simultaneously improve
the generalization ability and the accuracy of mosquito
classification benefiting from the strengths of both
regularization layers and transfer learning. The
proposed model can learn and extract the fine-
grained features from the discriminant parts of the
mosquitoes, similar to those used by entomologists in
manual examinations. Visualization of these features
based on the Grad-CAM Selvaraju et al. (2016)
further proves the capabilities and effectiveness of
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the proposed mosquito classification system. Overall,
the key contributions of the paper are summarized as
follows:

A novel end-to-end deep neural network is
proposed for mosquito classification based
on modifying the VGGI16 architecture and
applying transfer learning on the ImageNet Deng
et al. (2009) dataset for taking advantage of
features extracted from non-mosquito images.
Consequently, the model can perform accurately
for both small-scale and large-scale datasets.

Inspired by the regularization technique, the
original architecture of the pre-trained VGG16
is modified by adding two dropout layers which
effectively increase the classification accuracy
while mitigating model overfitting.

Proper location and the optimal number and value
of the dropout layers are selected through extensive
ablation studies resulting in high classification
accuracy. In addition to the promising quantitative
results, the feasibility of the model is evaluated
qualitatively through a visualization model based
on the Grad-CAM algorithm.

Assessing the performance of the proposed model
on four different public datasets along with the
combination of them, it is demonstrated that
our modified model outperforms four pre-trained
models under both controlled and uncontrolled
environments with small inter-class and large
intra-class variations leading to a high level of
generalization.

The remainder of the paper is organized as
follows. Recent related works are briefly reviewed.
Then, the proposed model is presented in detail. The
model’s performance is evaluated and compared with
the recent approaches through experiments besides
the explanations regarding the employed datasets,
experimental setup, and evaluation metrics. Ablation
studies and failure cases for the proposed model are
respectively discussed. Finally, we conclude the works
with possible future research directions.

RELATED WORK

Due to the importance of automated mosquito
identification and classification in monitoring the
population of vector mosquitoes and controlling
mosquito-borne diseases, researchers have developed
numerous approaches using both audio and visual
features. Among these studies, the recent competitive
vision-based approaches using deep learning models
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Table 1: Summary of the recent deep learning-based mosquito classification approaches, including brief details
about their evaluated dataset, methodology, and the reported accuracy (ACC) (MA: Mosquito Alert).

Reference Dataset Availability Methodology ACC | Classes

Motta et al. (2019) Own dataset (4,056 images) X GoogleNet 76.2% 6
Okayasu et al. (2019) Own dataset (14,400 images) X ResNet50 + Aug. 95.5% 3
Park et al. (2020) Own dataset (3,600 images) v VGG16 + Aug. + Transfer learning | 97.2% 5
Kittichai et al. (2021b) Own dataset (10,564 images) Upon request YOLOV3 + Aug. 98.9% 15
Adhane et al. (2021) | MA multidisciplinary team (2017) (3,364 images) v VGG-16 94.6% 2
Akter et al. (2021) Web sources (3,600 images) X Custom CNN 93.0% 3
Goodwin et al. (2021) Own dataset (2,696 images) v Xception 97.0% 39
Rustam et al. (2022) Pise et al. (2020) (1,404 images) v VGG16 using RIFS 98.6% 2

are briefly presented in this section (as summarized in
Table 1). Mota et al. Motta et al. (2019) applied the
pre-trained GoogleNet, LeNet, and AlexNet models to
classify both male and female genders of adult Aedes
aegypti, Aedes albopictus, and Culex quinquefasciatus
mosquitoes into 6 total classes. The highest testing
accuracy of 76.2% was achieved by GoogleNet. The
experiments were carried out on their own dataset
with the images captured from dead mosquitoes
in a laboratory under almost uniform lighting and
environmental conditions. In Okayasu et al. (2019),
Okayasu et al. compared the performance of the
conventional ML techniques with that of DL-based
models for mosquito classification. They extracted 12
different hand-crafted features from the images of
their dataset and used them to train a Support Vector
Machine (SVM) classifier. Their dataset was formed
by the images of the living mosquitoes captured
on plain white backgrounds. The performance of
the SVM was compared with three DL models of
AlexNet, VGG16, and ResNet, demonstrating that
ResNet obtained the highest classification accuracy of
95.5% on the augmented dataset.

Park et al. Park et al. (2020) developed a
new dataset from the images of Aedes, Anopheles,
and Culex mosquitoes which were classified after
augmentation based on applying transfer learning
on VGGI16, Resnet50, and SqueezeNet models.
Considering three experimental schemes of employing
no augmentation or fine-tuning, only fine-tuning,
and both fine-tuning and augmentation, VGG16
outperformed the other models with an accuracy of
56.7%, 91.1%, and 97.2%, respectively. Kittichai et al.
Kittichai et al. (2021b) developed another mosquito
dataset with 15 different classes from both newborn
and adult mosquitoes in two genders, male and female.
They applied different YOLO-based models Redmon
et al. (2015) for real-time classification, among which
YOLO-v3 achieved the highest accuracy of 98.9%
after enriching the dataset with augmentation.

Adhane et al. Adhane et al. (2021) presented a
comparative study based on two DL-based models,
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i.e., VGG16 and ResNet50, for binary classification
of tiger mosquitoes on the Mosquito Alert dataset.
Applying the transfer learning on these pre-trained
models, VGG16 surpassed ResNet50 with a validation
accuracy of 94.6%. Furthermore, the regions used
by the model to learn the features were visualized
based on the explainable models. Although it was
demonstrated that their model effectively learned
features from discriminative morphological patterns of
mosquitoes, the final accuracy is still insufficient for
real-world scenarios. Moreover, it suffers from poor
generalization as the performance was investigated
only on a single dataset and for a binary classification
task, i.e., tiger vs. non-tiger mosquitoes. At the same
time, there are other genera of vector mosquitoes
whose identification plays a significant role in
efficiently and practically controlling mosquito-borne
diseases. Akter et al. Akter er al. (2021) collected
their dataset from different web sources. Their
dataset was formed by 442 images which were
increased to 3600 images by applying four types
of augmentation. Proposing a custom CNN model
with convolutional, pooling, and dropout layers, they
achieved a classification accuracy of 70%, which was
improved to 93% after augmentation outperforming
the other models of VGG16, Random Forest, XGboost,
and SVM. Goodwin et al. Goodwin et al. (2021)
also developed a publicly available dataset with 2696
images in 39 classes and investigated the performance
of the Xception on it, reporting an accuracy of 97%.

Recently, Rustam et al. Rustam et al. (2022)
proposed a new feature selection method as RIFS,
1.e., a combination of ROI- and wrapper-based feature
selection methods, for binary classification of Aedes
and Culex mosquitoes. Different ML- and DL-based
classification models were applied, among which Extra
Tree Classifier (ETC) (99.2% accuracy) and VGG16
(98.6% accuracy) achieved the best performance while
the computational time and cost were reduced. Their
implementations were all carried out on a single
dataset developed by Pise et al. Pise et al. (2020),
including mosquito images on various backgrounds.
Although the existing approaches obtained satisfactory
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performance for mosquito classification, they still need
to be improved to the expert-level performance. On
the other hand, validating the performance mostly
only on a single dataset challenges their generalization
capability. Considering these issues, developing a
high-quality mosquito classification system on various
datasets captured in controlled and uncontrolled
environments is highly demanded, providing effective
preventive strategies and controlling the spread of the
arboviruses.

PROPOSED METHOD

The main flowchart of the proposed mosquito

classification system is demonstrated in Fig. 1.
It comprises three main components: 1) feature
extraction based on pre-trained VGG16, 2)

classification module with fully-connected, dropout,
and softmax layers, and 3) explainable model based
on Grad-CAM for visualization. Each of these
components and the applied techniques in the training
process are explained in detail in the following
subsections.

VGG16-BASED FEATURE EXTRACTOR
BACKBONE

Before extracting the features from the input
mosquito images, all the RGB images are resized into
224 x 224 pixels whose intensities are normalized,
leading to the mean and standard deviation values of
0 and 1, respectively. These pre-processed images are
fed into the pre-trained VGG16 model Simonyan and
Zisserman (2014) to extract the rich discriminative
features by minimizing the cross-entropy loss function.
VGG16 is one of the successful vision model
architectures. It extracts the feature maps from the
input images by a total of 13 convolutional and
five max-pooling layers arranged in 5 blocks. Two
first blocks have similar structures formed by two
convolutional layers with 3 x 3 kernel size and stride
of 1, followed by a max-pooling layer with 2 x 2
pooling size and stride of 2. The only difference
between these two blocks is the number of filters
in the convolutional layers assigned as 64 and 128,
respectively. In the last three blocks, the convolutional
layers are increased to three with 256, 512, and 512
filters from the third to fifth blocks, respectively. Max-
pooling layers are the same as the previous blocks.
The activation function of all convolutional layers is
the Rectified Linear Unit (ReLU) Agarap (2018). It
introduces non-linearity to classification, makes the
learning process faster, enhances the performance,
and deals with the vanishing gradient issue while it
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has simple computation. Based on its main equation
defined as ReLU (x) = max(0,x), it returns back its
input value if it is positive. Otherwise, its output is
set to zero. The final extracted feature maps from the
VGG16 architecture have a dimension of 7 x 7 x 512.
As training schemes of the CNN models are based on
the feed-forward process, the shallower convolutional
layers learn general patterns such as edges, corners,
boundaries, etc. In contrast, the deeper ones learn
more extensive patterns leading to the feature maps
desired for a specific task Mayer et al. (2018).
VGG16 has been initially pre-trained on ImageNet,
a large dataset with over one billion images. Taking
advantage of transfer learning, this pre-trained model
and the extracted features are fine-tuned for mosquito
classification. The main benefits of applying transfer
learning instead of training the model from scratch are
its faster and easier convergence, rich representations
of the features, and obtaining high accuracy, even for
small-scale datasets.

MODIFIED CLASSIFICATION BLOCK

Once the feature maps are extracted from the last
block of the VGG16 model, they are flattened into
a linear vector fed into the classification block for
predicting the type of mosquito. Generally, the VGG16
model has approximately 138 million parameters, 90%
of which are reserved for its classification block,
emphasizing its importance. The original pre-trained
VGG16 model has two fully-connected layers (with
4096 neurons) followed by a ReLLU activation function
and a Softmax layer. To further mitigate the effects
of data scarcity, prevent the model from overfitting,
and enhance the model’s generalization, a dropout
layer is added after each fully-connected layer as a
regularization technique. Overfitting occurs when the
trained model is too complex and performs poorly
when confronted with new data. To address this
issue, dropout layers with the value of 0.5 in our
modified classification block randomly ignore 50%
of the neurons and remove their contribution on
forward pass during training Baldi and Sadowski
(2013). Consequently, their weights are not updated
on the backward pass, and the remaining neurons
provide the desired representation from the input for
the final prediction. In this case, the network learns
multiple independent representations, leading to better
generalization and less probability of overfitting.

The final layer is another fully connected layer
with Softmax activation function whose number of
neurons equals the number of classes. Softmax
activation function is mathematically defined as
follows:

exp(x;)
¥ exp(xy)

Softmax(x;) = (1)
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Fig. 1: The main flowchart of the proposed model includes the convolutional blocks as feature extractors, fully
connected and softmax layers as classifiers, and two dropout layers as the regularization techniques. The Grad-
CAM component shows the model’s focus on learning the discriminant features.

Given a vector of numbers, i.e., x;, Softmax converts
it into a vector of normalized values as probabilities
that sum to one. Each of these values in the output
of the Softmax represents the probability score of
membership for each class. The class with the highest
probability score is considered the final prediction
for the model. Considering mosquito recognition as
a multi-class classification task, a categorical cross-
entropy loss function is employed for training our

model:
out put size

Y vilogyi
i=1

2

Loss = —

where J; and y; are the predicted scalar probability and
the corresponding target value.

GRAD-CAM-BASED EXPLAINABLE
MODEL
Grad-CAM stands for Gradient-based Class

Activation Maps, is a visualization algorithm that uses
gradients of the predicted class (calculated by Softmax)
as o; concerning the extracted feature maps from the
final convolution layer to generate heatmaps depicting
ROI where the model focuses on it for final prediction
Selvaraju et al. (2016). To this end, as illustrated in
Fig. 1, for a given resized image of x with the height
and width of H and W, the weighted sum of the alpha
values is calculated as follows:

H W af\c
(i J) = HxWZZaAk

i=1j=1

3)

where Ag(i,j) is the k-th activation unit in the
last convolutional layer. The importance of different
regions for the given class ¢ is visualized by o (i, j).
These regions are highlighted in the heatmap by
applying the ReLU activation function as Grad —
CAM = ReLU (Y, oAy). Practically, these maps help
to qualitatively assess a model to know if it effectively
learns the important features from the morphological
characteristics of the mosquitoes or if it just makes
predictions from unrelated features of the image.

EXPERIMENTAL RESULTS
DATASETS

The proposed mosquito classification model is
evaluated on four publicly available datasets captured
in both controlled and uncontrolled environments
with variations in the background and illumination
conditions (shown in Fig. 2). The details of each
dataset regarding the year of publication, number of
classes and images, labels of the classes, and more
information about the environmental conditions are all
summarized in Table 2.

Park

This dataset was developed by Park et al. Park
et al. (2020) in 2020, including a total of 4290
images from vector and non-vector mosquitoes. Vector
mosquitoes have 5 sub-classes of Aedes albopictus,
Aedes vexans, Anopheles sinensis, Culex pipiens, and

207
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Table 2: Summarized details of four different mosquito datasets adopted to evaluate the performance and

generalization of our proposed model.

Dataset Classes | Size | Genus (Species) Explanation
Park Park et al. (2020) 6 4,290 | Aedes (2) Dead mosquitoes
Anopheles (1) Plain backgrounds
Culex (2) The Non-vector class includes 5 different species
Non-vectors
IEEE Pise et al. (2020) 2 1,404 | Aedes Living mosquitoes
Culex Various backgrounds
Some images were created by augmentation
Kaggle Isawasan (2020) 2 1,023 | Aedes (2) Dead mosquitoes
Plain blue background
Goodwin Goodwin et al. (2021) 18 14,400 | Aedes (10) Dead mosquitoes
Anopheles (4) Plain backgrounds
Coquilletiddia (1) Only classes with over 100 images are adopted for our experiments
Culex (3) Dataset is balanced through sampling or augmentation so that each

class ends up having 800 images

Culex tritaeniorhynchus. All the images were captured
from dead adult mosquitoes in the lab environment
with a plain gray background and under stable lighting
conditions. In our experiments, the images of all
classes are utilized without enriching the quantity of
the dataset by augmentation.

s | |
Park IEEE Kaggle Goodwin

Fig. 2: Sample images from four different mosquito
datasets used to evaluate the performance and
generalization of our proposed model.

IEEE

This publicly available dataset was developed by
Pise et al. Pise er al. (2020) for binary classification of
the mosquitoes into two general classes of Aedes and
Culex mosquitoes with overall 1404 images. All the
images were captured in nature from alive mosquitoes,
some of whom were fed with blood just before
capturing the images leading to red stomachs. The
number of images was enhanced by applying rotation
as augmentation.

Kaggle

Isawasan et al. Isawasan (2020) provided this
dataset for classifying two types of Aedes mosquitoes
namely Aedes albopictus and Aedes Anopheles. The
images were captured from dead mosquitoes in a
laboratory environment with plain blue background.
All images of both classes are employed in our
experiments for binary classification.
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Goodwin

This dataset was provided by Goodwin et al.
Goodwin et al. (2021) with overall 6548 images in
67 classes. This is the first mosquito dataset with
the highest number of classes and many varieties
of mosquito species. However, the data distribution
among the classes is highly imbalanced. To reach
a good balance in this dataset, we use the classes
with more than 100 images leading to only 18
out of 67 classes. The dataset is balanced by
sampling or applying augmentation (i.e., random 0-
360 degree rotation, random brightness, hue, contrast,
and saturation variations in the ranges of 20%, 10%,
20%, and 20%, respectively) so that each class consists
of 800 images resulting in overall 14400 images.

TRAINING DETAILS

All the experiments are conducted on a PC with
windows 10 operating system, Intel Core i7-10700F
CPU @ 2.90GHz, an Nvidia GeForce RTX 2080 GPU
with 8 GB memory, and the TensorFlow framework
with Keras deep learning API. The training process
is carried out for 100 epochs, with a batch size of
16, and using an ADAM optimizer with an initial
learning rate of 5e¢~°. StepLR scheduler decays this
rate by a factor of 0.25 every 15 epochs. All the
input images are resized to 224 x 224 pixels, and the
performance is evaluated by applying the 5-fold cross-
validation strategy and computing the average value of
the results.
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Table 3: Performance evaluation and comparison between our proposed model with four pre-trained models on
the test set of four different datasets and their combination.

Model Dataset Accuracy (%) | Loss | Precision (%) | Recall (%) | Fl-score (%)
MobileNet Howard et al. (2017) Park 87.97 0.322 88 87 87
IEEE 88.25 0.301 80 94 88
Kaggle 74.70 0.591 77 73 75
Goodwin 80.93 0.413 83 80 81
Combined 79.43 0.482 82 87 85
VGG16 Simonyan and Zisserman (2014) Park 96.93 0.098 97 97 97
IEEE 93.14 0.121 94 93 93
Kaggle 90.40 0.283 90 90 90
Goodwin 94.33 0.251 93 96 94
Combined 94.49 0.249 96 94 94
ResNet50 He et al. (2016) Park 97.06 0.079 96 97 97
IEEE 91.52 0.214 91 92 91
Kaggle 92.04 0.198 92 92 92
Goodwin 97.27 0.413 97 96 96
Combined 95.86 0.231 98 94 95
VGG19 Simonyan and Zisserman (2014) Park 97.51 0.088 97 97 97
IEEE 96.55 0.103 97 96 97
Kaggle 92.11 0.193 93 92 92
Goodwin 94.94 0.232 96 97 97
Combined 95.25 0.256 98 94 97
Ours Park 98.82 0.074 99 99 99
IEEE 98.92 0.068 99 99 99
Kaggle 94.66 0.236 95 95 95
Goodwin 98.40 0.082 98 99 98
Combined 97.55 0.086 97 97 97
100 - metrics of Precision, Recall/Sensitivity, and F1-Score
/WWM PNV are utilized for assessing the performance of the
MINN A model. Precision is calculated by the fraction of
~ 80 n / the true positive predictions over all the correct and
& /,\[ / incorrect positive predictions as Precision = %.
o) In Recall/Sensitivity, which is also referred to as
3 / True Positive Rate, the number of true positive
< 60 predictions is divided by all the positive samples
Soe . TP ) .
Architecture as Recall /Sensmvzty = gn17p- F1-Score is .another
MobileNet successful metric defined based on Precision and
Proposed Architecture _ __ 2xPrecisionxRecall
404 / — ResNet-50 Recall as F1 —Score = Precision+Recall *
|/ — VGG-16
f VGG-19
PERFORMANCE ASSESSMENT
0 25 50 75 100 .
Epoch The performance of our proposed mosquito

Fig. 3: Accuracy curve of the proposed model for test
set on Park dataset compared to those of four pre-
trained models.

EVALUATION METRICS

One of the critical metrics for evaluating the
classification models is accuracy which is defined as
Accuracy = % where TP, TN, FP, and
FN are respectively the number of true-positive, true-
negative, false-positive, and false-negative samples
obtained from the confusion matrix. In other words,
accuracy is the fraction of right predictions over
the total number of predictions. However, employing
only accuracy is not enough for effectively evaluating

the model. Consequently, three more evaluation
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classification model is evaluated based on four metrics
of accuracy, precision, recall, and F1-score on four
publicly available datasets and their combination.
These values, along with the loss values for the test
set, are presented in Table 3 and compared with those
of four pre-trained models, i.e., MobileNet Howard
etal. (2017), VGG16 Simonyan and Zisserman (2014),
ResNet50 He et al. (2016), and VGG19 Simonyan
and Zisserman (2014). The bold values indicate
the best accuracy values. Obtaining an accuracy of
98.82%, 98.92%, 94.66%, 98.40%, and 97.55% on the
datasets of Park, IEEE, Kaggle, Goodwin, and their
combination, demonstrates performance improvement
in the ranges of 1.31-10.85%, 2.37-10.67%, 2.55-
19.96%, 1.13-17.47%, 1.69-18.12%, respectively. In
particular, by modifying the VGG16 architecture by
adding two dropout layers, our model surpassed the
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Fig. 4: Confusion matrices on the test set for three datasets of (a) Kaggle, (b) IEEE, and (c) Park.

original VGG16 model with an average accuracy
enhancement of 3.81% in all datasets, highlighting the
effectiveness of the dropout layers as the regularization
technique. The superiority of our model is also
proved through the loss values and the other three
evaluation metrics. Comparing our model’s learning
curve (accuracy) with the other four pre-trained
models on the Park dataset for 100 epochs in Fig. 3,
our proposed model is dramatically improved over the
MobileNet model after 25 epochs. The other models
experienced huge fluctuations up to 40 epochs. Then,
they plateau, and our model outperforms the others
with at least 1.31% enhancement.

Confusion matrices for the proposed model with
dropout layers are depicted in Fig. 4 for the Park,
IEEE, and Kaggle datasets and Fig. 5 for the
Goodwin dataset to further prove its feasibility. It
is worth mentioning that the misclassified samples
mainly belong to different species of the same genus
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whose morphological characteristics bear a striking
resemblance. In the Park dataset, the highest number
of misclassification occurs between the Culex pipiens
and two other species of Aedes vexans and Anopheles
Sinensis.

In addition to the quantitative evaluation, the
efficiency of our model is also evaluated qualitatively
through an explainable model based on the Grad-
CAM algorithm. As demonstrated in Fig. 6, the
heatmaps generated from the final convolutional layer
highlight the importance of the mosquitoes’ thorax
and legs for the model to learn the discriminative
features. These regions that are used by the model
for mosquito recognition are highly similar to those
used by entomologists in the manual examination.
These heatmaps give a real insight into the network,
confirming its promising performance and capabilities.
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Fig. 5: Confusion matrix on the test set for Goodwin dataset.

COMPARISON
THE-ART

The performance of the proposed method is
compared with the state-of-the-art approaches in Table
4 on four different datasets in terms of classification
accuracy. To have a fair comparison, we adopt the
same data splits as those of compared methods and
use their reported accuracy values except for the model
proposed in Adhane et al. (2021), whose accuracy
is obtained on the same datasets as ours based on
their public available source code. Our proposed
model outperforms the other approaches with an
accuracy of 98.46%, 98.89%, 98.92%, and 94.66% on
four datasets of Park, Goodwin, IEEE, and Kaggle,
respectively. It is worth mentioning that, although our
proposed system is closely related to the architecture in
Adhane et al. (2021), it obtains superior performance
with a significant margin (an increment of 2.05%,
4.07%, 2.26%, 3.33%, respectively) by applying
Adam optimizer instead of SGD and adequately
adjusting the hyperparameters of the dropout layers
and training process. Adam is an extended version
of SGD optimizer, and once its hyperparameters (i.e.,
learning rate and weight decay) are efficiently tuned,
it obtains better performance than SGD. In addition
to high accuracy, our model has superiority over the
other approaches concerning generalization ability. As

WITH THE STATE-OF-
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was mentioned, most existing approaches have poor
generalization as they have been evaluated only on
a single dataset. For instance, the performance of
Adhane et al. (2021) was only evaluated on a subset
of the Mosquito Alert dataset for binary classification
of tiger and non-tiger mosquitoes. In contrast, our
model evaluated binary and multi-class (6 and 18
classes) recognition tasks on four different datasets
attaining competitive performance. Consequently, high
generalization ability, as well as high classification
accuracy, make our proposed system applicable to real-
world vector control programs.

Aedes

vexans
Fig. 6: Heatmaps generated based on the Grad-CAM
algorithm from the last convolutional layer of the
model demonstrate the discriminant regions used to
learn the features.

Aedes
japonicus

Culex
genus

Anopheles
sinesis

ABLATION STUDY

To investigate the effectiveness of the dropout
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Table 4: The performance comparison of the proposed model with the recent approaches on four different datasets.

Dataset | Approach Classification
accuracy (%)
Park Transfer-learning + Dynamic augmentation Park et al. (2020) 97.19
Transfer-learning + SGD Adhane et al. (2021) 96.41
Proposed Model 98.46
Goodwin | Transfer-learning Goodwin et al. (2021) 97.04
Transfer-learning + SGD Adhane et al. (2021) 94.82
Proposed Model 98.89
IEEE Transfer-learning + SGD Adhane et al. (2021) 96.66
RIFS Rustam et al. (2022) 98.60
Proposed Model 98.92
Kaggle | Transfer-learning + SGD Adhane ef al. (2021) 91.33
Proposed Model 94.66

Table 5: The results of ablation study on Goodwin dataset for different numbers of dropout layers and their

locations (the bold values indicate two best results).

No. Dropout Layers / Dropout Locations Accuracy (%)
No dropout layers 93.6
1 x dropout layers / conv-block 1 93.3
2x dropout layers / conv-block 1, 2 93.5
3x dropout layers / conv-block 1-3 93.2
4 x dropout layers / conv-block 1-4 93.1
5x dropout layers / conv-block 1-5 94.0
1x dropout layer / fcl 95.2
2x dropout layers / fcl and fc2 (ours) 98.4
6 dropout layers / conv-block 1-5 and fcl 96.1
7 x dropout layers / conv-block 1-5 and fcl, fc2 98.5

layers and their locations in the model architecture,
the performance of the proposed model is evaluated by
modifying the VGG16 model with different numbers
of dropout layers in both feature extraction and
classification modules. As presented in Table 5, adding
dropout layers in the feature extraction module after
each of the first four convolutional blocks degrades
the model’s performance. Adding one more dropout
layer after the fifth convolutional layer improves
the performance but still slightly. On the contrary,
performance accuracy is significantly improved when
the dropout layers are applied after fully connected
layers in the classification module. The main reason
behind this phenomenon is that almost 90% of the
VGG16 parameters are in the classification module,
so even small changes in this module can end up
with big differences in performance. The performance
of the original VGG16 model is enhanced by 1.6%
and 4.8% by adding one and two dropout layers after
fully connected layers proving the effectiveness of
applying the regularization technique. Notably, this
performance is slightly improved when dropout layers
are simultaneously applied to the feature extraction
module (i.e., from 98.4% to 98.5%). Consequently,
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fewer dropout layers with higher accuracy (i.e., the
ones only applied to the classification block) are
selected as the optimal case. It should be mentioned
that all the dropout layers in this ablation study have
the same values as 0.5.

The impact of dropout value as the prominent
hyper-parameter of this layer is also investigated in
Table 6. Good performance is achieved when the
dropout value lies from 0.4 to 0.6. Within this range,
the highest accuracy is achieved for 0.5, which is the
optimal value for the dropout layers in our proposed
model. It is worth mentioning that most of the neurons
are ignored during training for weight updating when
the dropout value is increased to 0.7 and more. In
consequence, the performance dramatically degrades
for the large dropout values.

FAILURE CASES

Although our modified architecture obtains
successful performance in mosquito recognition, there
are also some misclassification cases. The heatmaps
of misclassified samples from different datasets are
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illustrated in Fig. 7. Model attention has carefully
investigated for the wrong predictions where the
model has failed to focus on the discriminative
regions of the mosquitoes. Deeply analyzing these
samples, we draw the inferences that three main
conditions pose a challenge to our system and degrade
its performance: 1) cluttered background, 2) dark
shadows of mosquitoes on the background due to
improper illumination, and 3) damaged or occluded
morphological features such as legs and thorax.

g

IEEE Kaggle Goodwin Goodwin

Fig. 7: Heatmaps generated from the last convolutional
layer of the model for the misclassified samples of four
datasets (the first and second row depict the original
images and the heatmaps, respectively).

Table 6: The results of ablation study on Goodwin
dataset for different values of dropout layer.

Dropout Value Accuracy (%)
No dropout layers 93.6
0.1 93.1
0.2 93.9
0.3 95.2
0.4 97.4
0.5 98.4
0.6 97.9
0.7 88.6
0.8 64.7
0.9 43.2
CONCLUSION

This paper tackled the problem of classifying
vector mosquitoes by modifying the VGG16 model
with dropout layers and taking advantage of transfer
learning. The main focus of this paper was introducing
an automated mosquito classification system with
high accuracy and generalization ability. To this end,
the performance of the proposed model has been
evaluated on four publicly available datasets, and their
combination proved its capabilities and feasibility. It
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outperformed the original VGG16 model and three
other pre-trained models on all five datasets. An
ablation study achieved a good trade-off between
the number of dropout layers and the performance
accuracy. Our proposed model surpassed the other
existing approaches with an accuracy of 98.46%,
98.89%, 98.92%, and 94.66% on Park, Goodwin,
IEEE, and Kaggle datasets, respectively. In addition
to quantitative evaluation, the model’s performance
was assessed based on the Grad-CAM algorithm and
visualizing the attention of the network for feature
extraction. The generated heat maps confirmed that
the model learned the data from the discriminative
regions of the mosquitoes, which further supported the
model’s reliability. In future work, we plan to minimize
the misclassification between different species of the
same genus to improve the accuracy while pruning
the model to reduce its computation cost. Providing
a new complete dataset, physically capturing the
images or artificially generating them based on
generative adversarial networks, would greatly benefit
the research community in this domain.
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