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ABSTRACT 

Besides descriptor designing, factoring out the categorical effects of affine transformations is also an 

effective way to match features. This paper proposed and demonstrated a hypothesis that any coplanar 

orientations have limited geometrical changes when observed in the camera screen under given ranges of 

3D affine transformations. Confirmatory experiments are accomplished by Matlab simulations focusing 

on specific influences of 3D affine transformations on similarity biases between concerned orientation 

changes. Statistical analyses and results show that rotations about plane axes mainly affect the geomet-

rical biases of orientation changes. A set of fit limits standing for the biggest influences of most affine 

transformations in specified ranges are numerically approximated by total sample space distribution and 

experimental extreme values. We use these Similarity Limits of Orientation Changes (SLOC) as optimi-

zation constraints in matching problems, and an application example of planar pattern matching is given. 

The effectiveness and efficiency of SLOC are proved by the experimental results in Mikolajczyk and 

HPatches testbed. 

Keywords: affine transformation, geometrical orientations, hypothesis testing, planar pattern matching, 

similarity bias. 

INTRODUCTION  

Matching is a fundamental problem in computer 

vision. It plays a deciding role in many applications 

such like stereo matching (Hamzah et al., 2016), object 

localization (Ozuysal et al., 2009), image registration 

(Tomaževič et al., 2012), video analysis (Valery et al., 

2007), 3D reconstruction (Se and Jaiobedzki, 2006), 

object tracking (Zhou et al., 2009), and etc.. For many 

instances, the difficulty of matching is caused by the 

unknown changes of viewpoint which can be 

explicated as affine transformations in terms of scale, 

translation and rotation.  

To cope with these three kinds of transformations, 

two trends of approaches have been developed. One is 

to design the descriptor of the area of interest as 

invariant as possible to all transformations, represented 

by famous SIFT (Lowe, 2004), GLOH (Mikolajczyk 

and Schmid, 2005), BRIEF (Calonder et al., 2010) and 

FREAK (Alahi et al., 2012). The other is to factor out 

the categorical effects of transformations, then train 

classifiers as matching is a classification problem, 

established by random tree (Lepetit et al., 2005) and 

FERN (Ozuysal et al., 2007).  

The former methods need to compute complex 

descriptors and measure their similarities at runtime, 

hence they have a large pressure on ensuring both 

precision and real-time. The latter relatively reduces 

runtime computations but whilst needs a high memory 

cost to represent complicated distributions for every 

feature, just like the two sides of the same coin. To 

compensate defects of both methods, some hybrid 

approaches have been proposed and proved to be 

efficient. 

All these methods have the same task of matching, 

which is to locate same points in different images. 

Since points can be connected into determinate lines 

and lines have determinate orientations in every image, 

if there exists a similarity of orientation changes of the 

same line between different images, would the points 

on lines have some same characteristics under such a 

geometrical constraint? 

In this paper, utilizing scientific method, a 

similarity of orientation changes is proposed and 

investigated according to a series of experiments on 

how affine transformations can affect basic geometrical 

elements such like angles and lines under the pinhole 

https://xueshu.baidu.com/s?wd=author%3A%28N%20Valery%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
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camera model, and whether these elements can keep 

several similarities under simultaneous influences of 

scale, translation, and rotation. 

Results of statistical analysis showed that the 

similarity of orientation changes is mainly related to 

rotation transformations, and a set of limits of 

similarity bias at different ranges of rotation angles are 

found. These limits stand for the biggest influences of 

any category of transformations, which is partly 

following the mentioned scheme that factors out the 

effects of transformations. But with these limits, 

classifier would not be necessary for matching. Instead, 

an optimizer shall be more qualified because this kind 

of limits can be transformed into some sorts of 

constraints. The major contribution of our work is a 

discovery of a novel SLOC constraint which can be 

applicable for most practical situations. 

The rest of paper is organized as follows. First, in 

material and methods, some basic models are 

summarized and formulaic conception of proposed 

geometrical similarity of orientation changes is 

depicted on emphasis. Then, the design ideas and 

specific implementation details of experiments are 

introduced, and interwoven with necessary statistical 

analyses. Results illustrate the rules and limits found by 

above experiments and statistical analyses. The 

mathematical description of deduced constraints are 

given, we apply these constraints to planar matching 

strategy as an example. Evaluated in two testbeds, the 

algorithm can achieve 15FPS for 800×600 image sets 

and keep precision when facing more rigid conditions 

comparing to classic matching algorithms, which 

demonstrates the efficiency of the proposed similarity. 

Finally, the conclusion and further work are discussed. 

 

MATERIAL AND METHODS 

PINHOLE CAMERA MODEL 

Matching is to find same points in different 

images. As points are located in 3D real world objects 

and imaged to 2D image plane, a mapping from 3D 

coordinates to 2D image coordinates should be 

established.  

In this paper, we chose the classical pinhole 

camera model as the basic imaging model because of 

its commonness. The simple geometry of the camera 

model is illustrated in Fig.1.  

 

Fig.1. Geometry of the pinhole camera model 

 

Let P be a point in the real-world object at 

coordinate  , ,X Y Z  relative to 3D camera 

coordinates. Point Q is the projection of point P onto 

the image plane, at coordinate  ,x y  relative to 2D 

image plane coordinates. Then the mapping from 

 , ,X Y Z  to  ,x y  can be given by 

0
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P   (1) 

where w  a scale factor, f  the focal length in 

terms of distance, x
m  and y

m  the scale factors 

relating pixels to distance, s  the skew coefficient and 

is set to 0 in our investigation,  0 0,x y  the principal 

point and are set ideally in the centre of the image, and 

finally P  the camera intrinsic matrix which denotes 

the projective mapping from world coordinates to pixel 

coordinates in pinhole camera model. 

Camera distortions are not considered in this paper 

for simplicity. Since the procedure of our investigation 

on geometrical similarity is prone to experimental 

reasoning, all experiments except application ones are 

implemented by Matlab simulations in ideal models. 

Therefore, intrinsic parameters are set to ideal for this 

virtual imaging system. The influence of distortions 

could be discussed in the future work if a better 

precision is to be wanted. 

3D AFFINE TRANSFORMATION 

3D affine transformation has been widely used in 

computer vision to describe all ordinary linear 

transformations such as scale, translation, and rotation. 

A mapping from coordinate  , ,X Y Z  to 

 , ,X Y Z    can be presented as a 9-parameter affine 

transformation 
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t  the translation matrix and R  the rotation 

matrix (Forsyth and Ponce, 2002). R  is generally 

given by 3 axial rotation , ,   . 

     1 2 3
R R R  R  with 
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cos sin 0

R sin cos 0
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 
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 
 
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 
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.  (5) 

, ,    denote Euler angles of , ,x y z  axial 

rotations. Every experiment in this paper that involves 

3D transformations applies these formulas as basic 

modes. 

 

SIMILARITY HYPOTHESIS 

a. Orientation change 

Let l  be a straight directed line segment on an 

object plane and observed by pinhole camera in image 

I . After some unknown 3D affine transformations, l  

is observed as l   in image I  . ,   are orientation 

angles of l  and l   in ,I I   respectively, representing 

the orientations of the same line segment in different 

observation planes, within range of   to  . 

Then the Orientation Change (OC) of l  from 

image I  to I   with orientations ,   is defined as 

oc( , )
2

if

else

   
 

  

  
  

  
  (6) 

with range of  0,2 . 

Its geometric significance is the counterclockwise 

rotation angle of the same line’s orientation in 

observation plane. A schematic diagram is showed in 

Fig.2.  

 

Fig.2 Schematic diagram of orientation change of l  

between images  

 

In Fig.2, the orientation change oc( , )   is the 

reflex angle showed in the left. As the orientation angle 

   of l   is less than zero, the orientation change 

    has to add 2  to hold positive, just as Eq. (6), 

to represent the reflex angle.  

Furthermore, it is easy to write 

oc( ', ) 2 oc( , )      ,  (7) 

as the reverse OC is the explementary angle of raw 

OC.  

If the directed line segments l  and l   have the 

reverse directions, ,   will add or subtract   

separately as they are in range of   to  , and the 

value of     will change 0 or 2  which can be 

eliminated by function Eq. (6), as OC is defined in 

range of  0,2 .  

Therefore, the OC is directionless. A line seg-

ment’s OC has no relationship with its direction. We 

call this line segment the fundamental line segment of 

its OC. 

This definition of OC some terms reflects the 

influence of 3D affine transformations. Thus our 

hypothesis can be depicted as “every line segment on 

the same object plane may have the similar OCs when 

observed under same conditions”. 

The suggested hypothesis is a guess that 3D affine 

transformations may affect OCs in similar ways. We 

 

 

  

 

 
 

 



 ZHA J AND XIE T: Similarity limits of orientation changes in affine transformations 

148 
 

are trying to find the extent of this similarity by 

analyzing the extreme of similarities and the 

distribution of data. 

 

b. Similarity of OC 

To test this hypothesis, a simple function   is 

defined to describe the similarity bias between two 

OCs: 

 1 2 2 1
, 2oc oc oc oc k       (8) 

where  0, 1,1k   is a coefficient to make sure 

  is within the range of  ,  . The smaller the 

absolute value of  is, the more similar two OCs are. 

 Based on Eq. (8) we can write 

 
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





  

   

    

  

 

 

where m is a same coefficient like k. 

Eq. (9) denotes that the function   is an associa-

tive operation just like subtraction, which means the 

similarity between two OCs can be calculated by 

utilizing a reference OC. We can first calculate the 

similarity between the reference OC and either target 

OC respectively, and then generate the final solution by 

those two similarities.  

This associative law is important to be mentioned 

because it allows us to test any similarity among a large 

set of OCs by defining only one reference, which 

largely shortens experimental duration. 

 

CONFIRMATORY EXPERIMENTS 

Test pattern 

As the similarity function has been defined, the 

next step is to test the hypothesis by examining   

under all different conditions refer to two kinds of 

variables, which are various attitudes of object plane 

and relative positions of tested line segments. 

The attitude of object plane is modeled as a 

combination of 3D affine transformations in this paper. 

As mentioned above, these transformations are 

categorized into scale, translation and rotation with 9 

parameters, and their formulas are given. 

The other variable is the position of line segment. 

As line segments can be distributed in anywhere of the 

object plane, the distance and intersection angle 

between them may uncertainly affect the similarity of 

their OCs. So the incoming experiments should not 

only test combinations of affine transformations but 

also the different distribution of line segments. 

To satisfy these two demands, we design a 5×5 

lattice as the test pattern with every connection of any 

two vertexes, pictured in Fig.3. 

The sampling of line segments distribution can be 

approximated as an even sampling upon the pattern 

area, because total 25 vertexes are distributed 

uniformly in the square pattern, and every vertex has 

24 connections to the other vertexes, no less no more. 

Those 300 connected line segments have total 24 

different orientations and 15 different lengths, each 

orientation has several parallel line segments in 

different lengths, which can incidentally sampling scale 

and translation transformations. That is because scale 

changes only length and distance, and translation alters 

in parallel. In the pattern there are plenty of parallel 

lines with various lengths and distances.  

 

Fig.3 Test pattern. The red color distinguishes the 

fundamental line of the reference OC. 

 

Therefore, applying the pattern showed in Fig.3 

reduces the complexity of confirmatory experiments. 

The 9 affine parameters need to be tested can be 

reduced to 3 parameters of axial rotation angles 

, ,   , and the distribution of line segments is also 

integrated. These two benefits are the major reasons of 

why we design this pattern. 

Experimental design 

Our confirmatory experiments are implemented by 

Matlab simulation in ideal models, so that the camera 

distortion and physical system errors can be out of 

consideration.  
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As mentioned above, the experiments only need to 

test 3 axial rotation angles (or attitude angles) , ,    

on , ,x y z  axis with the proposed pattern. So the task 

of confirmatory experiments is to examine all   

between 300 line segments under every variation of 

these 3 rotation angles. But it’s impossible to exhaust 

all degrees of rotation angles, so we use sampling 

method again just like the pattern established. 

a. Original conditions 

Before starting experiments, we first set the 

original conditions as a reference.  

The position of the pattern in camera coordinates is 

set to  0,0, f  with attitude angles 0     , 

where f  is the focal length.  

To be mentioned, we apply f  as the original z 

axis coordinate is only for simplicity. This value can be 

changed and the changing can be modeled as a 

translation on z axis. Since every z axial translation 

transformation can be replaced by a scale transfor-

mation in our camera models, and scale transfor-

mations are already sampled by pattern, so we fix the z 

value as a constant just for the reduction of 

experimental complexity. 

The pattern plane and camera principal plane are 

parallel. The x axis is horizontal in the pattern and the y 

axis is vertical. z axis coincides with the camera 

principal ray. So the original view of the pattern is 

exactly the view of Fig.3, which is observed as a 

reference frame or original frame. Thus all OCs are 

calculated between this original frame and the rotated 

frame need to be tested. 

 

b. Sampling intervals 

The range of ,   is set to  90 ,90    in 

degrees because when rotated by 90 degrees on x or y 

axis, the 2D pattern can only be seen as a single line in 

the pinhole camera model. Rotations larger than 90 

degrees would just lead to occlusion. The z axis 

rotations don’t have this limitation, so the range of   

is set to  0 ,360  .  

The sampling intervals of , ,    are all set to 1 

degree. Thus there are 11,534,760 (179×179×360) 

different combinations of affine rotation transfor-

mations. Consequently, there are 11,534,760 loops of 

confirmatory experiments need to be executed. 

 

c. Execution details 

Between any two different combinations, 300 line 

segments has 300 OCs, and there are 89,700 (
2

300
 , as

   , ,a b b a   ) values of   (similarity biases) 

between these OCs. It is not necessary to calculate all 

these   because we are only interested in distributions 

and extreme values as mentioned in Eq. (9), when 

hypothesis is suggested. 

Thanks to the associative law of   introduced in 

Similarity hypothesis, extreme values can be calculated 

by defining a reference OC and comparing every OC to 

this reference. 

So, we define R
oc  as the reference OC corre-

sponds to the horizontal red line in the middle of the 

pattern (also showed in Fig.3). Then under every 

different situation of rotations, we just need to compute 

300   instead of 
2

300
  between every OC and R

oc . 

The calculation can be written as 

 R
,i ioc oc   (10) 

where  1,2,...,300i . 

Among these 300  , we can find the maximum 

and minimum value max
  and min

 , then calculate the 

extreme value of similarity bias by Eq. (9) as follow: 

 

    

   

most min max

R min R max

min max

,

, , ,

, 11

oc oc

oc oc oc oc



 

 

   

 

  

where most  stands for the largest bias of 

similarity between 300 OCs. 

To get this most , we record max
  and min

  in 

every loop of experiments with their fundamental line 

segments’ positions. The mean value of 300   is also 

calculated and recorded in every loop marked as mean


so is the statistical distribution of 300   which 

denotes the histogram of these 300 samples with 10 

bins. 

The experimental results will explain why we 

record these variables. Statistical analyses of the results 

will help us discover several laws. 
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RESULTS 

SCALE AND TRANSLATION 

Under every combination of rotations, we recorded 

two extreme values max
  and min

 , with their 

fundamental line segments’ positions. We draw these 

“extreme” lines on an empty image which has the same 

size of the pattern, and superimpose all these images 

into a single graph, pictured in Fig.4. 

 

 

Fig.4 Frequency graph of line segments’ positions 

where holds extreme values of   

We call this graph the frequency graph of extreme 

lines. The lines that have higher gray levels are more 

frequent to be holding extreme  , so we call them 

extreme lines. 

As showed in Fig.4, these extreme lines are located 

near the pattern edges, which means the further the 

distance between two line segments, the larger the bias 

of their OCs while other conditions are same. We call 

this the distance law. 

Since the scale transformations are integrated, the 

middle region of the pattern some terms samples the 

smaller scales. As extreme lines are only distributed 

around the boundary, it states that bigger scales bring 

bigger biases of similarity when other conditions are 

settled. We call this the scale law. 

The same is also for translation. As z axial 

translations can be replaced by scale transformations, 

we only consider axes parallel to the pattern such as x 

and y axis. Thus, the extreme line segments around the 

edges surely have larger translations. So the translation 

law can be illustrated the same as scale, just as bigger 

translations bring bigger biases of similarity when 

other conditions are settled. 

These laws roughly depict the relationships 

between similarity biases and scale, translation, or 

distance inside pattern as they three are potential 

controlled variables for our experiments. If they are not 

integrated in our proposed pattern, they should be 

testified in particular tests merged with rotations. But 

that will make it too hard to find respective effect of 

every variables, as they are all fused together. So it is 

simpler and more effective to do this reduction in our 

way. 

 

RELATIONSHIP WITH Z DIMENSION 

We recorded max
 , min

  and mean
  in every 

loop, and saved them in three 179×179×360 matrixes 

as there were equivalent numbers of loops.  

All these matrixes are related to x, y, z axial 

rotation angles, defined as , ,    in previous section. 

So our major task is to find the underlying relationship 

between various   and these three kinds of controlled 

variables. 

Among three axial rotations, only z-axis transfor-

mations are parallel to pattern plane. That’s the reason 

why   has an entire sampling space from 0°to 360°, 

while ,  are not. So we suppose that the z 

dimensional rotations may have an independent 

influence on  . 

Therefore we extract 2D x-y matrix layers from 3D 

matrix with every  , and find that the elements in 2D 

matrix vary smoothly and rotationally between adjacent 

layers. They shift in a circle covering the whole matrix, 

contemporized with the change of  . This happens the 

same on matrix max
ψ , min

ψ  and mean
ψ . We show 6 

extracted layers of mean
ψ  in terms of depth maps as an 

instance in Fig.5. 

The numbers under every sub image in Fig.5 are 

layers’ indexes corresponding to their z-axis rotation 

angles  . Warmer colors stand for the bigger values 

and cooler ones strand for the smaller. These sub 

images may not obviously show the smooth changes 

between layers caused by the big interval, but the trend 

of anticlockwise rotations can be easily detected. By 

the way, we don’t show the layers after 180 because 

they are exactly the same as former 180 ones. 
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Fig.5 Depth map of extracted mean
ψ  matrix layer with different z axis rotation angles 

 

This phenomenon transmits a very important 

discipline. That is the z axial rotation angels are prone 

to have little affection on exact values of  , but decide 

the distribution of these values in matrix. 

We summarize this law as a result of parallel 

between pattern plane and rotation orientations. The 

parallel rotations can only affect the positions of line 

segments inside the pattern, but the other two 

orthogonal rotations can conclusively decide the 

pattern’s attitude in real world. 

Therefore, next step will focus on how x and y 

axial rotations determine the similarity bias with less 

consideration of z dimension.  

 

2D PROJECTION ONTO X-Y 

Fig.5 shows the rotational symmetry of our 

similarity bias matrixes. So we project the matrixes 

along z dimension onto 2D x-y plane to analyze the 

control mode of x and y axial rotation transformations. 

The projection is not just a simple addition or 

maximum of values along z dimension, we chose 

different method for extremum matrixes max
ψ , min

ψ  

and mean matrix mean
ψ . 

The extremum matrix elements are calculated as 

follow: 

 

    
ext

max min

,

max max , , , , ,
k Z

x y

x y k x y k


ψ

ψ ψ
  (12) 

where extψ  the 2D extremum matrix generated 

from max
ψ  and min

ψ ,     the absolute function, x and 

y the any row and column of the matrix, Z the sample 

space of z dimension, and k the layer index belong to Z. 

Eq. (12) expresses the geometrical meaning of 

extψ  as it is the largest absolute bias of similarity 

under every sampled x and y axial rotation angles. 

Every element in max
ψ  and min

ψ  stands for the 

extreme values of a 300   dataset comparing to one 

same reference OC. The maximum of their absolute 

values can be considered as the biggest geometrical 

bias among these 300 similarities. So, the maximum in 

z dimensional sample space expresses the extreme 

value of   that can be caused by every specified 

attitude of pattern.  

Fig.6 (a) shows the 3D shaded surface plot of extψ  

with its contour plot in Fig.6 (b). The middle of the plot 

is the origin with no x, y axial rotations, while the 

boundary area has the biggest rotations.  

It is obvious that the values in extψ  increase 

smoothly and radially following the change trends of x, 

y axial rotations, which clearly expresses the control 

functionality of x, y axial rotations. 
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The same can be observed from most bias matrix 

most
ψ  and median matrix med

ψ  too. Their formulas 

are written as follow. 

 

     
most

max min

,

max , , , , ,
k Z

x y

x y k x y k






ψ

ψ ψ
  (13) 

 
 mean

1
med

, ,

,

z

k

x y k

x y
z


 ψ

ψ    (14) 

where z is the capacity (360) of sample space Z, 

and other variables are same as Eq. (12).  

The 3D shaded surface plots and contour plots of 

most
ψ  and med

ψ  are showed in Fig.6 (c-f) with same 

scale of axes.  

Surfaces showed in Fig.6 are all stalactite shaped. 

The contours closer to origin are more similar to a 

circle, while the border ones are more like squares.  

The most
ψ  has the biggest values of our concerned 

similarity biases, which is reasonable according to Eq. 

(11) and Eq. (13).  

To be mentioned, Eq. (11) has a necessary 

condition to hold true, that is the value of max min   

must be in range of  ,  . Otherwise most  would 

add to 2k  by function   following Eq. (8), thence 

cannot represent the most bias any more. 

The smoothness of values in most
ψ  showed in 

Fig.6 (c) can demonstrate this condition. But the four 

corner areas in most
ψ  are exceptions. We explain this 

as a result of extreme view angles, under which all 

points in the pattern are projected onto a single line or a 

few clustered points, consequently   can only be zero 

or  , lacking their supposed meanings. 

Every element in med
ψ  contains an average 

absolute value of 360 means of every 300   as 

showed in Eq. (14). The absolute sign is utilized to 

express the extent of similarity bias, or geometrical 

bias called in this paper, which is the same in extψ  and 

most
ψ . 

Every element in med
ψ  contains an average 

absolute value of 360 means of every 300   as 

showed in Eq. (14). The absolute sign is utilized to 

express the extent of similarity bias, or geometrical 

bias called in this paper, which is the same in extψ  and 

most
ψ . 

 So, we can conclude that the similarity biases of 

OCs are mainly controlled by rotations about x and y 

axis. The bigger the rotation angles, the bigger the bias. 

 We define this statement as the rotation law. It is 

valid for extreme and mean values according to 

previous experiments, and is also representing the 

variation trend of whole sample space in statistics. We 

then will discuss the distribution of samples, for the 

purpose of a numerical measure. 

 

DISTRIBUTION 

All the laws found above illustrate several 

characteristics of extreme values, but not the whole 

sample space. So we calculate the histogram of all 300 

  in every loop to learn the distribution of  . We 

replace numerical axis labels of these histograms with 

abstraction words like ‘min’, ‘mean’ and ‘max’, in 

order to picture the whole statistical distribution 

between extremums.  

We accumulate all these histograms into a 

percentage bar graph, which is showed in Fig.7. By 

simple inspection, three facts can be concluded: 

 The distribution is bilateral symmetrical. 

 Values close to max or min limits only hold 

6.60% of whole sample space. 

 The other values approximately follow a 

uniform distribution.  

The percentage graph showed in Fig.7 is based on 

the whole sample space. But every   in the space is 

generated by comparing to the same reference OC not 

comparing to each other. That means the tested sample 

space should be considered as a mother space, which 

gives birth to every possible   for any pair of OCs 

according to Eq. (9). 
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 (a) 3D shaded surface plots of extψ   (b) contour plots of extψ  

 
 

 (c) 3D shaded surface plots of most
ψ   (d) contour plots of most

ψ  

 
 

 (e) 3D shaded surface plots of med
ψ   (f) contour plots of med

ψ  

Fig.6 3D shaded surface plots and contour plots of 2D projected matrixes.  
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     Fig.7 Percentage bar graph of all  , distribution is accumulated in every loop 

 

 

(a)  (b) 

Fig.8 3D shaded surface plots and contour plots of fitψ  

 

So, there are 89,700 (
2

300
 ) child pairs of OCs 

under every rotation, and the largest ones are calculated 

as most
ψ , which stats the limit values of similarity 

biases. These limits are all calculated by extreme 

values like max
  and min

  in mother space, therefore 

the largest biases among 89,700 child pairs are also 

generated by values close to extremums in mother 

space, which occupy 13.2% of whole quantity and 20% 

of value bins round border as showed in Fig.7.  

Thus, the largest biases have approximately 0.87% 

(6.6%×6.6%×2) of quantity in child space. Which 

means the other 99.13% of biases are all below 80% of 

the value limit most  according to following equations. 

 

 

 

 

most max min

max max mean mean

min min mean mean

most max min

max min

most

80%

80%

80%

0.8 15

  

   

   

  

 



 


     


     

    

  



 

where max
   and min

   stand for the new limit 

values in mother space when cutting off the extremum 

bins at two ends of percentage graph in Fig.7. most   

stands for the new biggest bias. 2k  has not been 

added for most  and most   in Eq. (15) because it has 

been discussed when most
ψ  was first introduced. 
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The number “80%” is came from the bin numbers 

in Fig.7, as value’s range is divided into ten equal 

parts, and bilateral symmetrical with mean value.  

Then, following Eq. (15) we can use the known 

most
ψ  to estimate the numerical limit of the majority’s 

similarity biases. We call this limit the “fit limit” fitψ . 

Fig.8 shows the 3D shaded surface plots and contour 

plots of fitψ , which are all 20% smaller than most
ψ . 

 

FIT LIMITS 

a. Limit values 

Fig.9 draws the numerical comparison of most
ψ  

and fitψ  in 2D plots when x or y axial rotation is zero. 

The red line showed in Fig.9 stands for the one-

dimensional data in 2D matrix most
ψ  when x or y 

rotation value equals to zero, and the blue line stands 

for the same in fitψ . The blue line is 20% lower than 

red line just following the Eq. (15).  

So, we can get the numerical fit limit at different 

ranges of x and y rotations according to Fig.9. We 

represent them in Table 1, where ,   are x and y 

axial rotation angles, and limits of similarity bias are 

the ceiling function (smallest following integer) of true 

values on the blue line in Fig.9, with true values 

showed in parentheses. 

We use that ceiling function for two reasons. First, 

we use it to tolerate the errors came from undefined 

display precision, as the calculation of OC is dependent 

uniquely on pixel positions in camera observation 

plane. Which means higher precision images may have 

sharper line segments, and consequently have better 

accuracy on calculations of OCs and  .  

In our experiments, we utilize a specified precision 

of 800×600 pixels for observation image. So, in real 

applications, any higher or lower precision would 

generate errors. But these errors wouldn’t be very 

large, as display precision can only slightly affect the 

orientations of lines. 

The second use of ceiling function is to roughly 

tolerate the unmodeled camera distortion and possible 

systematic errors of real applications. However, the 

exact influences of these errors are not measured in this 

paper. Thus, in this tentative usage, ceiling function is 

just a symbolical compensation, or a subjective guess 

for toleration. 

 

Fig.9 2D plots of most
ψ  and fitψ  when x or y axial 

rotation is zero 

 

Table 1 Fit limit for different ranges of rotations 

 

,   Limit of similarity bias 

 15 ,15    6°(5.66) 

 30 ,30    15°(14.02) 

 45 ,45    27°(26.35) 

 60 ,60    45°(44.86) 

 75 ,75    73°(72.51) 

 90 ,90    137°(136.47) 

 

b. Ranges 

After explaining how and why we handled limit 

values in Table 1, it is equally important to describe the 

actual meaning of corresponding ranges of   and   

in the left column. 

Our true intension is to find the fit limit of 

similarity bias in reasonable ranges. So, we samples the 

x and y axial rotation angles to check different 

observation view of the pattern. Fig.10 pictures several 

samples on individual rotations about y axis. It can be 

seen that when rotation is bigger than 60°, the pattern is 

so slant that it can only be observed in half size or even 

narrower. Then lines in pattern would be squeezed into 

a gathered bunch, hereupon, too close to be 

distinguished. 

Therefore, we believe that  60 ,60    is a 

reasonable range with certain application values, as it 
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covers most applications’ perspective conditions with 

few harsh requirements on line segments’ detection. 

But the range in terms of  , ,      doesn’t 

mean an ordinary square region in x-y coordinate plane. 

It actually stands for a contour area that holds the exact 

limit value of corresponding fit limits listed in Table 1. 

As showed in Fig.8, the contours are horizontally 

and vertically symmetrical. Their shapes are prone to 

be circles when near the center of coordinates, and 

squares when near the edges. It is hard to fit all these 

contours with mathematical formulas, so we just use 

simple notations like  , ,      to approximate 

the axial borders of contours’ range area. 

 

 

c. Statement 

Now we can conclude that in a rotation range of 

approximate  60 ,60    about x and y axis, the 

absolute bias of similarity between any two orientation 

changes of coplanar line segments is always less than 

45°under arbitrary 3D affine transformations including 

scale, translation and rotation. The smaller the rotation 

range, the smaller the corresponding limit, which just 

follows the Table 1. 

We call this conclusion the Similarity Limit of 

Orientation Changes (SLOC). It is the numerical 

verification of our hypothesis. As it gives the exact 

description of similarity limitation and applicable 

situations, we can apply it into planar pattern matching 

as a geometrical constraint in order to find the same 

features in different images. 

 

 

Fig.10 Observation views under different rotation angles (in degree) about y axis 

 

APPLICATION TO PLANAR PATTERN 

MATCHING 

Our SLOC primarily focuses on the lines in planar 

pattern. It can also be applied to match points or 

regions as we can draw auxiliary lines between points 

or regions. 

In this section, we will depict an example on 

planar pattern matching to illustrate the 

application methods of SLOC. 

The example is based on a previous work of 

augmented reality markerless registration (Xie et al., 

2013). In that work, we took colorful connected areas 

as invariant features, calculated their descriptors simply 

by hue and geometry information, and matched them 

by global optimization based on geometric constraints 

under undefined view transformations.  

Among those geometric constraints, the major one 

is the SLOC which was proposed and applied as an 

empirical constant at that time and is formally studied 

and testified in this paper.  

Let’s simply review the primary strategy of the 

algorithm and illustrate the usage of SLOC in matching 

points or region features. 

a. Algorithm strategy 

Inspired by the visual attraction of various colors 

in nature worlds, we apply regions with the uniform 

hue as invariant features because Hue is invariant to 

illumination changes and view transformations. 

Classical flood-fill method is utilized to achieve 

feature extraction. The description of these region 

features is composed of region’s average hue, contour 

shape, center point, area size, and region orientation. 

Average hue is the most basic matching criterion. 

As we intend to find same region features under 

different views, we firstly filter out regions whose 

average hue is far different from reference ones.  
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Then we calculate Hu invariant moments (Hu, 

1962) on candidate regions to compare their contour 

shapes and filter out unmatched ones again, as the 

second step.  

Thus, for every region feature in the reference 

frame or pattern, we can obtain a candidate matching 

list. Which makes the matching problem become 

finding the global optimal solutions among these 

candidate lists. 

We accomplish this optimization in an iterative 

way similar to RANSAC (Fischler and Bolles, 1981). 

In every iteration, we pick one region feature as a seed 

region, and assume one of its candidate matches on the 

list is a correct matching, called the seed matching. 

Then we examine every other region features by this 

seed matching with several geometrical constraints to 

find at most one (could be zero) best match for each 

tested region features. 

Then in one iteration we can get one global 

solution of pattern matching with an independent list of 

matched features. In different iterations the number of 

matched features may not be the same. So, the final 

global solution is the one has the longest list of 

matched features, or the one has the highest score of 

matching quality when several lists hold the same 

length. 

This optimization strategy is simple and efficient. 

It applies SLOC as the major constraint since there are 

two kinds of orientations related to regions between 

frames, and our SLOC is basically handling changes of 

orientations. 

b. Orientations 

Fig.11 illustrates the mentioned two kinds of 

orientations. They are the orientation of region, 

symbolized by  , and the orientation between center 

points, symbolized by  . 

In Fig.11, the blue rectangular region 
ref

seed
R  and red 

elliptical region 
ref

test
R  are the seed and test region 

features in the reference frame. The similar-shaped 

region 
cur

seed
R  and 

cur

test
R  in the current frame are the 

candidate matches of 
ref

seed
R  and 

ref

test
R  respectively.  

 

Fig.11 Orientations of interest between frames 

 

ref

seed
  and 

cur

seed
  are the orientations of region 

ref

seed
R  

and 
cur

seed
R  in the reference frame and current frame 

respectively. They are defined by the Principal 

Component Analysis (PCA) of points’ distribution 

inside regions. The same are the 
ref

test
  and 

cur

test
  for the 

test region.  

If we assume 
ref

seed
R  and 

cur

seed
R  are correctly 

matched as the same region feature, the OC 

(orientation change) of this seed region can be 

generated by 
ref

seed
  and 

cur

seed
  as showed in Fig.11, with 

the symbol 
seed

 . The same of 
test  can also be seen 

in Fig.11 for the test region. 

ref  is the orientation between center points of 

seed region and test region in the reference frame. It 

depicts the directions from seed region to test region. 

So is the 
cur  in the current frame. Their OC is 

symbolized as  .  

According to SLOC, the absolute biases of 

similarity among these three OCs should be less than 

45 degrees. So, we can write following equations. 

 seed test, 45     (16) 

 seed , 45     (17) 

Eq. (16-17) are the major constraints on filtering 

out candidate matches. The change of area size and 

distance between regions are also considered as an 

addition. When test region has more than one suitable 

match, the best match would be the one with the 

smallest similarity bias. 

Now we have described the example usage of 

SLOC studied in this paper, we will then examine the 

precision and efficiency of this usage by experiments. 

Reference 

Current 
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c. Experimental results 

Mikolajczyk testbed (Mikolajczyk et al., 2005) and 

HPatches (Balntas et al., 2017) are applied to evaluate 

the capability of the above registration algorithm 

following SLOC constraint. The standard ‘Graffiti’ 

scene in Mikolajczyk testbed and ‘Wormhole’ scene in 

HPatches are applied as they contain various colors and 

big viewpoint changes. 

Fig.12 depicts an example of the optimization 

result of colorful regions matching. It demonstrates the 

effectiveness of SLOC. 

 

 (a) Region matching 

 

 (b) Matched regions in the scene 

Fig.12 Example of matching result 

 

Fig.13 depicts the final registration results of 

graffiti and wormhole scene, with the comparison to 

classic local descriptor SURF (Bay et al., 2008), ORB 

(Rublee et al. 2011), and BRISK (Leutenegger et al., 

2011) methods. The upper row images depicted in 

Fig.13 are the registration results of graffiti scene in 

more and more tilt viewpoints and the lower row 

corresponds to wormhole scene respectively. The first 

image in each row is the reference image to be 

registered.  

The wireframes in different colors drawn in Fig.13 

(b-e, g-j) are the registration results of different 

algorithms compared in this paper. The color of yellow, 

green, blue, purple, and magenta respectively stand for 

the ground truth of the testbed and the result of SLOC, 

SURF, ORB, BRISK. The errors of each registration 

result are estimated by the average distance of four 

corners of wireframes between each tested algorithm 

and ground truth (Lieberknecht et al., 2009). 

Table 2 and Table 3 depict the numerical measure 

of registration errors and matching speed of our SLOC 

algorithm and SURF, ORB, BRISK. All experiments 

are implemented by the hardware of Intel (R) Core 

(TM) i7-10750H Dual-CPU @ 2.60GHz 2.59GHz, 

with 64GB memory, while software platform is 

OpenCV 2.4.13.6 with integrated SURF, ORB, BRISK 

algorithms under 64-bit Windows 10 operation system. 

 

 

 

 (a)  (b)  (c)  (d)  (e) 

 

 (f)  (g)  (h)  (i)  (j) 

Fig.13 Registration results with comparison to SURF, ORB, BRISK. Upper row: graffiti scene of Mikolajczyk 

testbed. Lower row: wormhole scene of HPatches testbed. The yellow, green, blue, purple, and magenta wireframes 

stand for the registration results of given ground truth, SLOC, SURF, ORB, and BRISK respectively. 
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Table 2 Comparison of registration errors (pixels) 

 
Sub-Fig. (b)  (c)  (d)  (e)     (g) (h) (i) (j) 

SLOC 5.86 11.46 21.28 14.63 17.11 15.37 13.52 43.58 

SURF 3.93 13.07 518.17 514.83 3.41 6.31 2.09 13.08 

ORB 1.96 4.61 406.89 421.25 3.46 13.95 3.52 7.87 

BRISK 1.35 8.66 11.73 507.74 2.75 1.15 2.16 3.49 

 

Table 3 Comparison of average speed (ms) 

 

Testbed Graffiti (800×600) Wormhole (493×327) 

Step 

time/ms 

Feature 

detection & 

descriptor 

extraction 

Matching 
Average 

FPS 

Feature 

detection & 

descriptor 

extraction 

Matching 
Average 

FPS 

SLOC 45.53 17.02 15.98 42.51 2.35 22.58 

SURF 423.48 113.28 1.86 112.97 12.21 8.06 

ORB 139.76 3.58 6.99 60.79 3.75 15.5 

BRISK 336.75 123.32 2.18 95.48 10.45 9.44 

 

 

Depicted in Table 2, the registration results of 

SLOC are not better than classic algorithms when the 

tilt of viewpoint is relatively small. However, when the 

tilt is getting larger such as in Fig.13 (d-e) sub-images, 

classic algorithms almost fail while SLOC still keeps 

good precisions. This evidence demonstrates the 

capability of our SLOC algorithm under large 

viewpoint changes. It’s also a practical testification as 

our SLOC is theoretically suitable for tilt angles below 

60 degrees. 

 On the other hand, Table 3 illustrates the efficien-

cy of our matching strategy compared to classic 

algorithms. As showed in Table 3, our algorithm can 

achieve 15 FPS real-time matching for 800×600 graffiti 

scene while classic algorithms can only achieve less 

than 7 FPS. 

All in all, the algorithm example described in this 

section can be thought as an instruction of our SLOC 

constraint for planar pattern matching. The 

experimental results showed both good effectiveness 

and efficiency. There could also be many other ways to 

utilize the SLOC when facing other kinds of 

conditions. We shall keep on studying the application 

method of this category of matching constraints, and 

other constraints like distance and area size should be 

developed too. 

 

DISCUSSION 

In this paper, with the help of hypothesis testing, 

we find a series of Similarity Limits of Orientation 

Changes (SLOC) under specified range of 3D affine 

transformations.  

The mathematical expressions of Orientation 

Change (OC) and the similarity bias (  ) between 

orientation changes are proposed. Confirmatory 

experiments are designed to study the specific 

influence of 3D affine transformations on these 

similarity biases. A lattice test pattern integrated with 

translation and scale simulations is proposed to reduce 

the experimental complexity. 

By statistical analysis, several laws on relation-

ships between similarity bias and distance, scale, 

translation and 3 axial rotations are found. We 

concluded that the rotations about two pattern axes 

mainly affect the geometrical bias of OCs. The fit 

limits of the bias under different rotation ranges are 

numerically approximated by the distribution of total 

sample space and extreme values. 

The major contribution of our work is the discov-

ery of a novel SLOC constraint which can be 

applicable for most practical situations. An application 

example was given as an instruction of how SLOC 

constraint can be applied in global optimization of 
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matching problem. The experimental results proved its 

effectiveness and efficiency. 

The further work should focus on the several 

aspects described below. 

 The precision of confirmatory experiments can 

be improved by designing better pattern, consid-

ering distortion of camera, increasing sample 

size, or utilizing real world pattern instead of 

MATLAB simulations.  

 More application methods should be developed 

as SLOC constraint can be applied for many 

kinds of geometrical features. 

 More hypothesis testing can be tried for other 

characteristics like distance or area size of 

region features as they may have the similar 

changing limits related to rotation angles as the 

orientation. 
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