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ABSTRACT 

Super-resolution imaging is a critical image processing stage that improves visual image quality. Super-

resolution imaging has a wide array of use in different fields, such as medical, satellite, and astronomical 

images. The correct execution of this stage could increase the accuracy and quality of any available 

processes in different executive fields. Learning methods, especially deep learning, have become much 

more popular in recent years for performing the super-resolution imaging process. Methods with this 

approach have high-quality levels but lack appropriate performance times. This study intends to perform 

super-resolution imaging using an algorithmic approach based on the particle swarm optimization algo-

rithm and the fractional Fourier transform. The test results on a dataset show the 92.16 % accuracy of this 

proposed method. 

Keywords: fractional Fourier transform, image enhancement, particle swarm optimization algorithm, 

super-resolution imaging. 

INTRODUCTION  

The technological progress of imaging in different 

devices, such as home screens, mobile phones, satellite 

imaging systems, medical imaging systems, and all 

monitoring systems (including road cameras and 

astronomy imaging systems), created the need for high-

resolution images. There are two major approaches to 

providing this necessary requisite in practical 

situations: the first is using proper hardware based on 

the intended usage, and the second is using software 

processes to increase the image resolution. The 

development of artificial intelligence and its different 

branches (such as machine learning, digital image 

processing, and machine vision) lead to the popularity 

of the second approach (using software algorithms) for 

creating high-resolution images. There have been many 

studies regarding the usage of machine learning, 

especially deep learning, in super-resolution imaging in 

recent years )Liu et al., 2018; Yang et al., 2019; Li et 

al., 2021; Liu et al., 2020). 

However, deep learning methods suffer from 

complex computations and data dependency in their 

final model. In other words, super-resolution imaging 

models are limited to that problem's data in model 

training. Furthermore, deep learning methods mostly 

have a hidden parametric structure instead of an 

algorithmic nature, which means users are unaware of 

their background operations. Therefore, presenting an 

algorithmic method for image quality enhancement 

using super-resolution imaging becomes important. 

The current study intends to address this problem.  

Many techniques with simple approaches avoid 

deep learning for super-resolution image recreation 

(Park et al., 2003; Park, 2004). The super-resolution 

imaging studies presented in this article use deep 

learning approaches because this study intends to 

compare its proposed method's operational generality 

with deep learning-based methods. Super-resolution 

imaging based on deep learning consists of supervised 

and unsupervised network learning mechanism (Wang 

et al., 2020). Both mechanism use deep convolutional 

networks as their base (Fang et al., 2020; Suseela and 

Kalimuthu ,2021; Liu et al., 2019; Troung et al., 2019; 

Weiss et al., 2019). Convolutional networks are a 

significant component of deep networks such as Unet 

(Fang et al., 2020) or are used as a generative 

adversarial network (Liu et al., 2019).  

(Fang et al., 2020), is the first considered study 

that uses deep learning with a supervised model for 

super-resolution imaging. They perform super-
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resolution imaging on cellular images. They use low-

resolution images from a spot scanning system, a deep 

network, and a designed reducer to reduce the 

resolution of high signal to noise ratio (SNR) 

groudtruth images while teaching a system to increase 

the quality of respective groundtruth images with low 

resolution. This study uses a deep Unet network with a 

resNet-34 basis. This method can achieve higher 

learning speeds for produced data because of its 

resolution reducer. 

(Hatvani et al., 2018), used a deep convolutional 

base inside a deep Unet network to improve dental 

texture damage images. They used a dental tomography 

image dataset alongside a deep convolutional network 

to improve microscopic CT-Scan images for improved 

dental root canal injury diagnosis. The usage of various 

super-resolution imaging performance measures is a 

notable factor in this study. The proposed method 

results show better root canal, size, and shape 

diagnoses while using deep convolutional networks.  

(Troung et al., 2019) is another study that uses a 

deep learning system to improve the resolution of 

images from a visible light camera used in a drone for 

landing. Implementing the deep convolutional network 

on two different datasets shows the proposed method's 

proper performance in using the executive system in 

drones.  

Another study from (Liu et al., 2019) uses a 

generative adversarial network to improve images with 

limited pixel counts and diffraction limitations. The 

results show the system's cohesive super-resolution 

imaging capabilities in chips and its usage for 

improving microscopic holographic images. 

These studies generally show the target-oriented 

super-resolution imaging process in different 

applications to improve the target system's 

performance. Implementing deep learning and deep 

convolutional networks is an effective approach to 

image quality enhancement and their super-resolution 

imaging process. However, deep learning has the 

following challenges even with its high accuracy 

levels: 

1. System learning requires sample datasets  

2. The main operations are performed in a black 

box hidden from the writer. 

3. The high computational complexity and slow 

algorithmic speed. 

Regarding the discussed challenges of super-

resolution imaging activities based on deep learning in 

different areas, our proposed method will somewhat 

address the three challenges of the numerous dataset 

requirement, high time complexity, and algorithmic 

resolution in how to perform super-resolution imaging. 

For the first challenge regarding the large number of 

datasets, our proposed method is a simple routine, 

including a set of basic image processing commands 

that directly perform super-resolution imaging on the 

input image. Therefore, learning is not required in the 

process. On the other hand, it can be asserted that the 

computational complexity of the proposed method is 

significantly lower than deep learning-based 

approaches due to the simplicity and low computation-

al complexity of each executive step of the super-

resolution imaging routine. Regarding the fact that the 

proposed method is a sequential routine of simple 

image processing commands, it can be said that the 

proposed method can be outlined as a step-by-step 

algorithm, and the output of each step can be observed. 

Therefore, how the method functions is adequately 

transparent. In addition to all the discussed issues of the 

deep learning-based methods, the most important 

disadvantage of algorithmic super-resolution imaging 

approaches is the low accuracy and quality of the target 

process. Our proposed method improves the accuracy 

and quality of algorithmic methods due to its internal 

structure. 

The rest of this study is structured as follows. The 

second section presents the generalities of the proposed 

super-resolution imaging algorithmic method. The third 

section discusses the proposed method’s results. In the 

end, the fourth section presents the discussion. 

 

PROPOSED METHOD 

This section will discuss the proposed method in 

detail. The proposed method consists of three major 

sections (Fig. 1 depicts this diagram with highlighted 

major sections). This study will go over two base 

theoretical concepts used in this algorithm before 

getting to the proposed method algorithm itself.  

 

FRACTIONAL FOURIER TRANSFORM 

The Fourier Transform is a strong mathematical 

technique that transforms spatial domains into 

frequency domain signals. The Fourier transform can 

divide signals into their sine and cosine components 

regardless of the sound wave and/or image matrix. 

Equations 1 and 2 present the mathematical Fourier 

transform equation. Equation 1 determines the discrete 

Fourier transform, and Equation 2 the continuous 

Fourier transform for a determined signal.  
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Fig.1. Adaptive Fractional Fourier Super-Resolution(AFFSR) Method's Diagram 

 

𝑋(𝜔) =  ∑ 𝑥(𝑛)𝑒−𝑗𝜔𝑛
𝑛= +∞

𝑛= −∞

  (1) 

𝑋(𝜔) =  ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡 
+∞

−∞

 (2) 

The fractional Fourier transform is a generalized 

form of the Fourier transform. It is a linear operator 

defined in (Sejdić et al., 2011; Mendlovic and Ozaktas 

,1993; Almeida,1994). 

Equation 3 depicts its mathematical nature. 

𝑋𝛼(𝑢) = 𝐹𝛼(𝑥(𝑡)) =  ∫ 𝑥(𝑡)𝐾𝑎(𝑡. 𝑢)𝑑𝑡
+∞

−∞

 (3) 

There 𝐾𝑎(𝑡. 𝑢)  parameter here is defined as 

follows: 

𝑲𝒂(𝒕. 𝒖) = 

{
 

 √
𝟏−𝒋 𝐜𝐨𝐭𝜶

𝟐𝝅
  𝒆

𝒋(
𝒖𝟐

𝟐
)
𝐜𝐨𝐭 𝜶 × 𝒆

𝒋(
𝒕𝟐

𝟐
)
𝐜𝐨𝐭 𝜶 − 𝒋𝒖𝒕 𝐜𝐬𝐜𝜶 

𝜹(𝒕 − 𝒖) 
𝜹(𝒕 + 𝒖) 

 

Section (I) of the 𝐾𝛼(𝑡. 𝑢) function from Equation 

4 is used in Equation 3 when  is not a multiple of , 

Section (II) is used when  is a multiple of 2, and 

Section (III) is used when  +  is a multiple of 2. 

Also, 𝛿 in this equation is the Dirac delta function 

(Sejdić et al., 2011). The fractional Fourier transform is 

the n-th exponentiation of the Fourier transform that 

(4) 

I 

II 

III 
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could be mapped onto any time to frequency domain, 

unlike the normal Fourier transform. In other words, 

fractional Fourier transforms facilitate the usage of all 

available gradients in a determined signal. Therefore, 

the normal Fourier transform will be a special state of 

its fractional type. Fig. 2 shows the fractional Fourier 

transform. This approach is widely used in optical 

problems (Hricha et al., 2020; Saad et al., 2018; Zhao 

et al., 2018; Dai et al., 2021), image processing 

(Faragallah et al., 2021; Kaur et al., 2021; Massihi and 

Rashidi, 2021; Zhang et al., 2021), robotics (Lopez et 

al., 2021), and medical signal processing (Gupta et al., 

2021; Alqahtani et al., 2022; Mastromichalakis and 

Chountasis, 2021). 

 

Fig.2. Fractional Fourier Transform's General Nature 

 

PARTICLE SWARM OPTIMIZATION 

The particle swarm optimization algorithm is a 

metaheuristic method presented in 1995 by (Poli et al., 

2007). This algorithm can solve complex engineering 

problems by taking inspiration from the swarm 

behavior of some phenomena, such as flying birds, (de 

Moura Meneses et al., 2009).Needing fewer parameters 

for optimization and high accuracy comprehensive 

function mapping are two significant benefits of this 

approach compared to other metaheuristic methods. 

Fig. 3 shows the general diagram of the particle swarm 

optimization method.  

Particle swarm optimization is a powerful 

technique for solving many engineering problems. It is 

a flexible algorithm that can be mixed with other 

mathematical structures. This study uses particle 

swarm optimization to find the optimal fractional 

Fourier transform answer in image enhancement. The 

following section explains the proposed algorithm for 

super-resolution imaging considering these two 

theoretical concepts.  

 

Fig. 3. Particle Swarm Optimization Diagram 

(Kachitvichyanukul, 2012) 

PROPOSED ALGORITHM DETAILS 

There are three main blocks in the proposed 

algorithm (green, blue, and red in Fig. 1). The green 

and blue blocks parallelly perform a sequential 

operation set on their input and forward it to the red 

block. In other words, these three blocks perform the 

main super-resolution imaging operation as the middle 

stage of the executive process. The first stage is before 

these blocks, and the final stage is after the red block's 

output. The following section discusses this executive 

algorithm's stage-by-stage process for each diagram 

stage. 

THE INITIAL STAGE 

There are three primary operations in this phase 

after uploading the input image: 

1. Transform the image into a floating- point state for 

future processings. 

2. Configure the initial algorithm parameters 

alongside the corresponding initial particle 

swarm optimizer parameters 

a. The general number of algorithm iterations for 

the super-resolution imaging process. 

b. Determine the initial particle swarm optimizer 

algorithm parameters corresponding to the initial 

population (initial alpha value) and the initial 

population value.  

3. Fractional Fourier transform operation  

After executing operations 1 to 3, the output from 

3 is forwarded to the green and blue blocks. 
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THE MIDDLE STAGE 

This stage consists of three blocks. The green and 

blue blocks operate parallelly without any other 

parametric dependencies. However, the red block is 

dependent on both. The operational procedure of each 

block is as follows: 

1. The Green Block 

 a. Extract the initial phase's output spectrum size 

from the fractional Fourier transform operation. 

 b. Shift the stage (a) matrix to insert the zero-

frequency components in the spectrum center. 

 c. Insert the shifted stage (b) matrix in the center of 

a zero matrix twice as large as the current one.  

 d. Shift the stage (c) matrix to insert the zero-

frequency components in the spectrum center. 

Forward the resulting matrix (A2) to the red block. 

2. The Blue Block 

 a. Extract the previous stage's phase (the initial 

stage) 

Define the Fourier transform from the extracted 

phases and implement the inverse fractional 

Fourier transform. 

Double the current stage (b) matrix size using the 

Bi-Cubic method. 

Implementing the fractional Fourier transform with 

the alpha value on the resulted stage (c) matrix. 

Extract the stage (d) output spectrum phase and 

forward it to the red block. 

3. The Red Block 

 a. Combine the green block (the A2 size matrix) 

and the blue block (the Ph2 phase matrix) output 

matrices.  

Implement the inverse fractional Fourier transform 

on the resulted stage (a) matrix to change its 

domain from frequency to time (space).  

THE FINAL STAGE 

The red block output is a signal consisting of real 

and imaginary sections. Only the real section matters 

for processing. Therefore, the final phase consists of 

the following steps: 

Extract the real section from the middle phase (red 

block) output signal. 

Implement the BackProjection operation on the step 1 

output with 100 iterations (the output from step 

1 is a matrix two times larger than the input 

image with low resolution). The output of this 

step is the first high-resolution image.  

Calculate the fitness function. 

Update the Pbest and Gbest values. 

Update the Alpha that includes particle speed and 

location values. 

Check the algorithm stop condition 

If the stop condition is met: 

The algorithm ends. 

The best super-resolution image and optimized 

fractional Fourier transform alpha are shown as 

the final output. 

If the stop condition is not met: 

The algorithm returns to step 3 of the initial phase 

and repeats itself with these new values. 

There are three crucial notes regarding three super-

resolution imaging algorithm stages using the fractional 

Fourier transform and the particle swarm optimizer 

algorithm. First, the resolution is used in an algorithmic 

structure, which is non-existent in deep learning-based 

algorithms because everything happens in the 

background of a matrix computation set without the 

structural resolution of the used algorithm. 

Second, the proposed algorithm is computationally 

more straightforward than other deep learning methods. 

This significantly increases the proposed method's 

speed. 

 

ALPHA PARAMETER CALCULATION 

The algorithm uses two variables (number of 

iterations and fitness function derivative value for the 

particle swarm optimizer) to determine its ending 

whenever one of them reaches its intended value. The 

alpha parameter value depends on the particle swarm 

optimizer fitness function. This study uses the proposed 

method's percentage of signal to noise ratio(PSNR) 

output compared to the Bi-Cubic output on the input 

image (a fixed value) to define the particle swarm 

optimizer's fitness function. Equation 5 depicts the 

mathematical nature of PSNR. 

𝑷𝑺𝑵𝑹(𝒙. 𝒚) = 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎(
𝑴𝑨𝑿𝟐

𝑴𝑺𝑬(𝒙. 𝒚)
) (5) 

The mean square error (MSE) parameter 

used here is calculated using Equation 6. 
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𝑴𝑺𝑬(𝒙. 𝒚) =
𝟏

𝑴 ∗ 𝑵
∑∑(𝒙 − 𝒚)𝟐

𝑵

𝒋=𝟏

𝑴

𝒊=𝟏

 (6) 

The x and y values here are the Bi-Cubic output 

and super-resolution images. Furthermore, MAX is the 

highest brightness value in the super-resolution image. 

Therefore, the PSNR value increases for a fixed value 

with more super-resolution imaging process iterations. 

Furthermore, the fitness function must be maximized 

during the optimization process. Thus, the negative 

PSNR value must be minimized considering the 

minimization goal in the particle swarm optimization 

method, which will maximize the target value. The 

proposed particle swarm optimization algorithm stops 

after receiving a fitness function derivative value lower 

than 0.001 after multiple consecutive iterations. Fig. 4 

depicts the fitness function results after 100 iterations. 

The application reaches its stop condition after 72 

iterations in this figure, with a fitness function value of 

41.6847. Furthermore, the optimized alpha value for 

the fitness function is 0.36432. The following section 

will present the experimental results of using the 

proposed method. 

 

 

 

Fig. 4. Particle Swarm Optimizer's Fitness Function Value in the Proposed Method 

 

RESULTS 

This section starts by reviewing the proposed 

method's identification accuracy. Then, it presents a 

performance comparison between the proposed and 

other available methods. 

 

 

 

IDENTIFICATION ACCURACY 

The proposed method's identification accuracy. 

Furthermore, the average error rates of values from 40 

classes were analyzed to better understand the 

proposed method's classification error rates. The results 

show an overall average error rate of 7.84 %; therefore, 

the proposed method has a 92.16 % accuracy. Fig. 5 

depicts the error rates for all 40 classes. 
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Fig. 5. Average Classification Error Rate for the ORL database 

 

This section analyzes some super-resolution 

images. Fig. 6 depicts the output of multiple super-

resolution images using the proposed method alongside 

results from the Bi-Cubic method used in the particle 

swarm optimizer's fitness function. These images show 

the proposed method's clear advantage over the Bi-

Cubic method in depicting image detail. In Fig. 6, first 

row is original images that resized to 256*256 before 

super-resolution. The second and Third rows depicts 

result of Bi-cubic and AFFSR methods respectively. As 

can be seen, in the super-resolution process using the 

proposed method, the opacity phenomenon is 

significantly reduced compared to the Bi-cubic method. 

 

PARAMETERIC COMPARISION 

Parametric evaluation criteria are calculable using 

mathematical equations based on the input and output 

data. This section compares the proposed methods 

using the PSNR, Structural Similarity Index Measure 

(SSIM), and RunTime criteria. The RunTime criterion 

indicates the execution time of the super-resolution 

process for an input image. The lower the value of this 

criterion, the higher the speed and the lower the 

computational complexity of the implementation 

method. Another criterion is SSIM, which is used to 

measure the structural similarity index. In fact, this 

criterion determines the quality of the super-

resolutioned image compared to the original image. 

Equation 7 indicates the mathematical form of this 

criterion. 

(7) 𝑆𝑆𝐼𝑀(𝑥. 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇2𝑥𝜇
2
𝑦 + 𝑐1)(𝜎

2
𝑥𝜎

2
𝑦 + 𝑐2)

 

In the above relation, 𝜇𝑥  and 𝜇𝑦  are the pixel 

means and 𝜎2𝑥  and 𝜎2𝑦  are pixel variances of the 

original and super-resolutioned images. 𝑐1  and 𝑐2  are 

constant values. The quality of super-resolution process 

is better when the SSIM is higher.  

 

 

 

 



 FARAMARZI A ET AL: Adaptive image super-resolution algorithm 

140 
 

 
A 

 
B 

 
C 

Fig. 6. Aoriginal images B.Output of Bi-Cubic method C.output of AFFSR method 

 

 

COMPARISION BY BI-CUBIC ALGORITHM 

This section compares the proposed method's 

PSNR, SSIM, and RunTime values with the Bi-Cubic 

method in several images. These images enter the 

super-resolution imaging process with a 256*256 

resolution and exit as 512*512. Table 1 depicts the 

results of this comparison, which shows the definitive 

superior performance of the proposed AFFSR 

compared to the Bi-Cubic method in all three criteria. 

In the explanation of Table 1, to make a compre-

hensive and rapid conclusion about the comparison of 

the proposed method with the Bi-Cubic method in the 

parameters of RunTime, PSNR, SSIM, the last row of 

the table with the title of average can be used. As can 

be seen in this row, the average RunTime for the 

proposed method is higher than the Bi-Cubic method, 

while in the average of the other two parameters, a 

higher value can be seen for the proposed method 

compared to the Bi-Cubic method. This higher value 

indicates that the proposed method produces a higher 

quality image than the Bi-Cubic method. 

COMPARISION BY OTHER METHODS 

This section compares the proposed method's 

performance with other studies using several images. 

This comparison is between their PSNR values. These 

images enter the process with a 256*256 resolution and 

exit as 512*512. Table 2 shows the comparison result. 

As reported in Table 2, it can be seen that the proposed 

method has a higher PSNR in most images than the 

previous methods, but in some images the PSNR value 

of the AFFSR method is lower than some methods. The 

conclusion obtained from the average row indicates 

that the proposed method is in the second place after 

the Chen method in terms of the quality of the 

produced image. 
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Table 1: Comparing the Proposed (AFFSR) and Bi-Cubic Methods 

 

SSIM PSNR RunTime(sec) 

Image Proposed 

(AFFSR) 
Bi-cubic 

Proposed 

(AFFSR) 
Bi-cubic 

Proposed 

(AFFSR) 
Bi-cubic 

0.7278 0.6656 25.567 25.3511 1.4812 0.1519 Barbara 

0.8228 0.7703 28.7662 27.7831 1.4864 0.1563 Barbara2 

0.7150 0.6639 30.9054 29.9472 1.4855 0.1420 Boat 

0.8874 0.8410 38.3443 35.7448 1.4849 0.1364 Cameraman 

0.7740 0.7368 34.1681 32.6602 1.4597 0.1357 Clown 

0.9027 0.8749 34.2721 32.6606 1.5036 0.1499 Crowd 

0.7778 0.7281 32.2247 31.4538 1.5063 0.1518 Goldhill 

0.7633 0.7174 35.4265 34.1194 1.4590 0.1352 Lena 

0.8108 0.7632 32.04 31.053 1.4886 0.1473 Man 

0.7242 0.6393 24.3146 23.6416 1.6052 0.1518 Mandrill 

0.6968 0.6527 32.6989 31.855 1.5011 0.1521 Peppers 

0.7447 0.6633 31.3127 30.1996 1.5177 0.1442 SanDiego 

0.7789 0.7264 31.6700 30.5394 1.4983 0.1462 Average 

 

Table 2: Comparing PSNR Values of the Proposed Method (AFFSR) with Approaches from Other Studies 

 
Average Crowd Cameram. Couple Clown Peppers Lena Mandrill Boat Man Barbara Method 

25.89 25.51 25.94 26.21 25.82 26.88 27.33 22.92 25.75 26.11 26.47 
(Li and Ordhard, 

2001) 

28.97 28.92 29.59 28.4 29.34 31.13 31.43 23.93 28.30 29.34 29.33 
(Yang et al., 

2010) 

24.46 24.53 24.91 25.56 22.65 24.78 25.27 22.51 24.51 24.95 24.93 
(Tsa et al., 

2012) 

30.28 30.96 31.46 29.83 29.91 31.91 32.72 24.76 29.99 30.67 30.61 
(Chen and 

Fowler , 2012) 

30.02 30.64 30.96 29.47 30.12 31.81 32.28 24.42 29.72 30.36 30.41 (Zhu et al.,2014) 

28.71 28.69 29.89 28.62 28.69 29.6 29.91 25 28.79 29.23 28.69 
(Freedman and 

Fattal, 2011) 

29.94 29.98 30.9 28.9 30.14 32.51 31.83 24.61 29.60 30.91 30 

(Mokari and 

Ahmadyfard, 

,2017) 

30.09 29.89 30.36 29.22 29.9 32.31 32.37 26.32 29.27 30.82 30.38 
Proposed 

(AFFSR) 

 

COMPARING USING FEI FACE DATA 

This section compares the proposed method with 

other studies based on the PSNR, SSIM, and RunTime 

criteria using six face images (Fig. 7: F1 to F6) from 

the FEI dataset. Table 3 presents the results. These 

images enter with a 146*146 resolution and exit the 

super-resolution imaging process as 292*292. Table 3 

clearly depicts the lower RunTime values of the 

proposed method compared to others. However, the 

proposed method has a definite advantage over other 

methods in the PSNR criterion. 

 

 

Fig. 7. Face Images from the FEI Databas 
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Table 3: Comparing the Proposed and Other Methods using Face Images from the FEI Database 

 

TRNR 
(Jiang et al., 2016) 

SSR 
(Jiang et al., 2016) 

SRLSP 
(Jiang et al., 2016) 

LCR 
(Jiang and Hu ,2014) 

Proposd 

(AFFSR) Image 
Rtime 

(sec) 
SSIM PSNR 

Rtime 

(sec) 
SSIM PSNR 

Rtime 

(sec) 
SSIM PSNR 

Rtime 

(sec) 
SSIM PSNR 

Rtime 

(sec) 
SSIM PSNR 

1.97 0.92 31.82 152.88 0.91 31.57 19.7 0.98 37.61 4.23 0.95 35.15 0.55 0.94 49.6 F1 

1.45 0.92 34.12 145.49 0.91 33.58 23.44 0.97 39.81 4.55 0.95 37.1 0.48 0.94 50.32 F2 

1.83 0.92 31.06 161.26 0.91 31.38 25.96 0.98 36.59 4.39 0.96 34.38 0.46 0.93 48.65 F3 

1.91 0.94 33.85 163.03 0.93 33.15 22.15 0.98 39.59 4.43 0.96 37.41 0.5 0.94 50.31 F4 

1.89 0.94 35.12 149.34 0.93 34.45 20.93 0.98 42.32 4.32 0.97 39.03 0.47 0.93 51.46 F5 

1.47 0.69 22.09 148.92 0.73 24.47 20.61 0.95 31.5 4.29 0.82 24.58 0.46 0.82 33.39 F6 

1.75 0.89 31.34 153.49 0.89 31.43 22.13 0.97 37.90 4.37 0.94 34.61 0.49 0.92 47.29 Average 

 

As shown in the results of Table 3, the time 

complexity as well as the PSNR value of the proposed 

method performed better than all available 

methods.The PSNR value obtained by the proposed 

method is 25% higher than that of the best available 

method. Using low computational processing 

techniques such as Fourier transform in the proposed 

method has led to a very significant reduction in time 

complexity compared to other methods. 

 

DISCUSSION  

The super-resolution imaging process is one of the 

most practical image processing subjects (it is used in 

different fields such as traffic systems, astronomy, and 

medical systems). Super-resolution imaging in these 

systems must have high accuracy rates with real-time 

results. Various studies reached these high accuracy 

rates by focusing on deep learning. However, these 

methods are relatively slow, making them unusable in 

real-time systems. On the other hand, algorithmic 

super-resolution imaging processes face two significant 

challenges: weak performance and unique initial 

configurations for diverse executions with different 

structural features.  

This study proposes a novel super-resolution 

imaging method using an adaptive approach based on a 

mixture of the fractional Fourier transform and particle 

swarm optimizer. This method has a dramatic effect on 

these two significant challenges. This method's visual 

and quantitative results determine its higher quality, 

accuracy, and speed in performing super-resolution 

imaging based on different criteria.The proposed 

method improved the time complexity and performance 

accuracy (as shown by the PSNR measure) compared 

to other methods. The PSNR provided by our method is 

compared to the Bi-cubic method in Table 1 and other 

methods in Table 2. The accuracy and time complexity 

of the proposed method in super-resolution imaging of 

face images were compared with other methods in 

Table 3, in which the significant improvement of both 

criteria is obvious. Comparing our proposed method's 

results with other images and methods in Table 3, 

PSNR was improved by at least 25%, and runtime was 

reduced by at least 100%. Furthermore, simplicity, 

operational clarity, and lower computational 

complexity in producing high-resolution images are 

other benefits of this method.  
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