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ABSTRACT 

The shrinkage function has an important effect on the image denoising results. An adaptive shrinkage 

function is developed in this paper to shrink the small coefficients properly for image denoising based on 

neighborhood characteristics. The shrinkage function is determined by the number of large coefficients 

near the current signal coefficients. In this way, different shrinkage functions can be adaptively used to 

deal with different coefficients in the process of image denoising, instead of using fixed shrinkage func-

tions. Experimental results show that the SNR of the image processed by the adaptive shrink function 

algorithm is better than that processed by the soft threshold, hard threshold, and neighborhood shrink 

algorithm. Moreover, compared with the traditional soft threshold, hard threshold and neighborhood 

shrink algorithm, the PSNR of the algorithm using adaptive shrink function increases by 3.68dB, 2.28dB 

and 0.61dB, respectively. In addition, the proposed new algorithms, soft threshold and hard threshold, are 

combined with empirical Wiener filtering and shift invariant (TI) scheme to compare their image noise 

reduction effects. The results show that the PSNR can be improved significantly by using the adaptive 

shrink function algorithm combined with empirical Wiener filtering and shift invariant (TI) scheme. 

Keywords: image denoising, neighboring coefficients, wavelet transforms. 

INTRODUCTION  

Noise suppression without losing too much image 

information is a complicated problem in the image 

processing. The wavelet transform has become a 

favorable technique that removes noise from the noisy 

contaminated images in many different areas, such as 

hyperspectral image denoising (Alessandro et al., 

2020), feature extraction (Lalith   et al., 2021 and Çelik 

et al., 2008), face recognition (Fadi et al., 2022 and 

Yu-Hsuan et al., 2022), etc. The basic steps of the 

image denoising include firstly, transforming the noisy 

image into a wavelet domain by the two-dimensional 

(2D) discrete wavelet transform; secondly, thresholding 

the wavelet coefficients in the wavelet domain and 

finally, performing the inverse 2D wavelet transform to 

obtain the denoised image. Both the soft and hard 

thresholding method (Dohono, 1995; Dohono et al., 

1994 and Dohono et al., 1995) are also frequently used 

because of their effectiveness and simplicity. However, 

there are some disadvantages to these two methods. For 

example, a bigger bias would occur when the soft 

thresholding shrunk the large coefficients. Due to the 

discontinuities of the shrinkage function, the hard 

thresholding algorithm exhibited visual artifacts (Gibbs 

phenomena) in the neighborhood of discontinuities 

(Coifman et al., 1995). To overcome the drawbacks of 

soft and hard thresholding, a lot of methods have been 

proposed. Such as, the TI scheme (Coifman et al., 

1995), the random interpolation average scheme (Ying 

et al., 2010 and Ying et al., 2013), the empirical wiener 

filtering (Choi et al., 1998; Ghael et al., 1997 and Choi 

et al., 2004), and the NeighShrink scheme (Chen et al., 

2003 and Cai et al., 2001)  

Many algorithms have emerged on the image 

denoising using the improved techniques to improve 

the denoised capability. The spatially adaptive wavelet 

thresholding method based on a context modeling was 

proposed in (Chang et al., 2000). This work applied the 

context modeling to estimate the parameter for each 

coefficient, which was then used to adapt the 

thresholding strategy. In ref. (Shengqian et al., 2002), 

the shrinkage thresholds were calculated according to 

the neighborhood characteristics and the noise level. 

The adaptive thresholding algorithm resulted in an 

efficient method for the image denoising. In ref. (Chen 

et al., 2005)
 

an efficient adaptive algorithm was 

proposed. The adaptive threshold was applied to 

capture the dependency of inter-scale wavelet 

coefficients. In ref. (Sendur et al., 2002a and Sendur et 

al., 2002b), a nonlinear bivariate shrinkage function 
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was proposed for the image denoising. Their method 

was based on the new non-Gaussian bivariate 

distributions to model the inter-scale dependencies. 

Simoncelli and Adelson (Simoncelli et al., 1996) 

developed a Bayesian estimator that provided a natural 

extension for incorporating the higher-order statistical 

regularity presented in the point statistics of subband 

representation. The customized NeighShrink (Chen et 

al., 2005) applied the customized wavelet to replace the 

fixed wavelet in the NeighShrink denoising. The 

numerical results showed that it was better than the 

NeighShrink scheme obviously. In ref. (Zhou et al., 

2008), the authors improved the NeighShrink scheme 

using the Stein’s unbiased risk estimate. It could 

estimate an optimal threshold and the neighboring 

window size for the NeighShrink scheme in every 

wavelet subband. The experimental results 

demonstrated that it outperformed the NeighShrink 

scheme. 

Traditional denoising methods set small coeffi-

cients to zero or shrink them using a fixed shrinkage 

function. The values of a small coefficient are often 

less than or equal to the threshold. so that they are 

filtered by the threshold. However, in fact, some of the 

small coefficients contain a lot of useful information 

about the image. If these kinds of coefficients can be 

preserved or shrunk properly, it is no doubt that better 

results will be given. An adaptive shrinkage function 

algorithm for image denoising is proposed in this 

paper. In this algorithm, the coefficients with values 

larger than the threshold will be kept originally. Each 

small coefficient would be properly shrunk by a special 

shrinkage function. According to the number of the 

large coefficients in the neighborhood of the current 

small coefficient, the shrinkage function was 

determined. Because different small coefficients are 

thresholded using different shrinkage functions in our 

method, more image features will be preserved. 

 

MATERIAL AND METHODS  

WAVELET TRANSFORMS AND IMAGE 

DENOISING 

In 2D wavelet transforms (Gonzalez et al., 2002 

and Mallat et al., 1989), one 2D scaling function 

((x,y)) and three 2D wavelets (
(x,y), V

(x,y) and 

D
(x,y)) are required. They are the product of the one-

dimensional scaling function j,k(t)=2
-j/2(2

-j
t-k) and 

the corresponding wavelet j,k(t)=2
-j/2 (2

-j
t-k) and can 

be expressed as (x,y)(x)(y), 
(x,y)=(x)(y), 

V
(x,y)=(x)(y) and D

(x,y)=(x)(y), respectively. 

The discrete wavelet transform of the image I(x,y) with 

a size of  M×N is satisfied by the equation (1) and (2) 
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Where, the index i identifies the directional 

wavelets in equation (2), J is the largest (or coarsest) 

scale in the decomposition, W(J,m,n) is the 

approximate coefficients of I(x,y) at the scale J. 

W
i
(j,m,n) is the detail coefficients along different 

directions at the scale j(j=1,2,…,J). 

The 2D orthogonal wavelet transform of images is 

shown in Fig. 1. The decomposition and reconstruction 

subbands are listed at the top and the bottom rows in 

Fig. 1. The wavelet coefficients are arranged as the 

independent square matrices during image denoising. 

Four frequency subbands (A, DH, DV, and DD) are 

produced by each decomposition step. The wavelet 

transform could be done recursively through 

decomposing the low frequency wavelet coefficients 

(subband Aj) which are produced by the previous 

decomposition step. 

 

Fig. 1. Subbands of 2D orthogonal wavelet transform. 

Because most of the Gaussian white noise can be 

averaged out in low frequency wavelet coefficients, the 

small coefficients in subband AJ are mainly contributed 

from the image and should be kept. Only high 

frequency wavelet coefficients (subbands DH, DV, and 

DD) should be thresholded. Only in this way can the 

denoised image retain more information about the 

original image and be as close as possible to the 

original image.  The reconstruction of denoised image 

is obtained by the inverse discrete wavelet transform 
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The shrinkage functions of soft and hard threshold-

ing can be expressed as 
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where, T ( )log(2 MNT  ) is the universal 

threshold, σ
2
 is the noise variance, M×N is the number 

of pixels. If the noise variance is unknown, it can be 

estimated in the subband DD1 by a robust median 

estimator (Dohono et al., 1994). 
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The universal threshold will be used in all the 

denoising methods in our experiments. 

 

ADAPTIVE SHRINKAGE FUNCTIONS 

ALGORITHM DESCRIPTION  

Neighboring coefficients with similar information 

are guaranteed by the convolution of the image I(x,y) 

with the wavelet basis. The distance between two 

coefficients and the wavelet basis will decide how 

similar they are. The closer the distance of two 

coefficients, the more similar they are. Generally, small 

coefficients are set to zero because they are from the 

noise. Large coefficients are kept or shrunk by a 

thresholding policy because they are contributed by the 

image. As far as the similarity of two neighboring 

coefficients is concerned, it is impossible that the small 

coefficient is completely from the noise signal, while 

the large coefficient is completely from the image. 

According to analysis, if the small coefficient is 

neighbored with one or more large coefficients, it 

should be filtered by a special shrinkage function rather 

than setting it to zero. It is beneficial for preserving the 

image information. The following shrinkage functions 

are proposed for the image denoising. 
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where，r is the number of the large coefficients in 

the neighborhood. For image denoising, wavelet 

coefficients W
i
(j,m,n) are filtered one by one using 

different shrinkage functions, on the basis of their 

individual r values. The denoised image is 

reconstructed by taking the thresholded coefficients 

Ŵ
i
(j,m,n) into the equation (3). The input-output 

characteristics of the proposed shrinkage functions for 

different r values are shown in Fig. 2. 

 

Fig. 2. The input-output characteristics of the proposed 

shrinkage functions. 

According to equation (7), large coefficients are 

kept. The difference between the proposed method and 

the other methods is the shrinkage of the small 

coefficients. In order to properly shrink the small 

coefficients, the adaptive shrinkage functions are 

employed. The small coefficient with no neighboring 

large coefficient (r=0) is set to zero. In this case, the 

proposed method and the hard thresholding were the 

same. If r>0, small coefficients are shrunk by different 

shrinkage functions determined by different r values. 

Note that the larger the r, the larger the thresholded 

coefficient is. Because the characteristics of 

neighboring coefficients are considered, the proposed 

method should have better denoising results. It can be 

reflected by the comparison of the mean square error 

(MSE). The MSE (risk) is defined as equation (8). 
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where, I(x,y) is the noise-free image and Î(x,y) is 

the denoised image. We assumed that Tr represents the 

2D wavelet transform and Tr
-1

 represents the inverse 

2D wavelet transform, then the MSE is expressed as 

equation (9). 
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Note that the transform preserves the vector 

lengths when Tr and Tr
-1

 are orthogonal. Thus, the 

MSE satisfies equation (10). 
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where, Tr(I(x,y)) represents the wavelet coeffi-

cients of the noise-free image, Tr(Î (x,y)) denotes the 

wavelet coefficients of the denoised image. Equation 

(10) can be rewritten as equation (11). 
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where, a
o
 is approximation coefficients of the 

noise-free image, a is approximation coefficients of the 

noisy image, W
o
 is detail coefficients of the original 

image and Ŵ is thresholded detail coefficients of the 

noisy image. Because the approximate coefficients are 

kept during the image denoising, the first item on the 

right side of equation (11) can be neglected. Both W
o
 

and Ŵ can be divided into three parts 

o
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where, W
o

>T and Ŵ>T represent those coefficients 

larger than the threshold, W
o

r=0 and Ŵr=0 denote small 

coefficients with no neighbored large coefficients 

(r=0), W
o
r>0 and Ŵr>0 denote small coefficients 

neighbored with one or more large coefficients (r>0).  

The thresholded coefficients resulted from other 

methods and the proposed method are same except for 

the third part (Ŵr>0). The third part resulted from other 

methods and the proposed method can be represented 

by Ŵ
H

r>0 and Ŵ
P

r>0, respectively. In other image 

denoising methods, due to fixed shrink function, many 

small coefficients are directly filtered whether they 

contained the useful information or not. However, in 

the adaptive shrink function method, the value of ∑

(W
o

r>0-Ŵ
P

r>0)
2
 and ∑(W

o
r>0-Ŵ

H
r>0)

 
2 still should be 

compared before the small coefficients are killed. Thus, 

the small coefficients are set to zero until the value of 

∑(W
o

r>0-Ŵ
P

r>0)
2
 is less than that of ∑(W

o
r>0-Ŵ

H
r>0)

 2
. 

It means that the small coefficients neighbored with 

one or more large coefficients will be shrunk properly 

rather than setting to zero. Therefore, Useful image 

information carried by small coefficients is preserved 

in the detail wavelet coefficients. For example, 

supposing W
P

n is an arbitrary coefficient of Ŵ
P

r>0, and 

W
H

n and W
o

n are the corresponding coefficients of 

W
H

r>0 and W
o
r>0. Then, when equation (14) holds, the 

method employing adaptive shrink function gives a 

lower risk.  
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where, d ( r

P

n TW
Td )

)(
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
 ) is an attenua-

tion coefficient. Obviously, 0<d<1. It is easy to get 

equation (16) 

o
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where, W
o
n can be treated as the original compo-

nents of W
P

n. If the relationship between W
o
n and W

P
n 

satisfied equation (16), our method would give a lower 

risk than the other denoising methods.  

The proposed method for image denoising can be 

concluded as follows 

1) Perform the 2D wavelet transform on the noisy 

image to get the wavelet coefficients. 

2) Apply the proposed method to shrink the 

wavelet coefficients. 

a) Keep the large coefficients; 

b) Count the value r of each small coefficient in an 

n×n neighborhood window;  

c) Shrink the small coefficients using different 

shrinkage functions determined by different values of r. 

3) Perform the inverse 2D wavelet transform on 

thresholded wavelet coefficients to get the denoised 

image. 

NEIGHBORHOOD WINDOW SIZE OPTIMI-

ZATION 

The value r of every small coefficient Wj,k needs to 

be counted so as to determine the shrinkage function 

which is used to shrink the small coefficient itself. A 

square window Bj,k of n×n centered at Wj,k is 

considered. Where, n is an odd number. A small 

coefficient and its neighborhood windows (3×3 and 

9×9) are illustrated in Fig. 3. The size of Bj,k 

determined the value r and the denoising efficiency. 
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Thus, the comparison experiments are performed to 

select an optimal size of Bj,k. Different wavelet 

coefficient subbands are independently thresholded in 

the proposed method. In the boundary regions of each 

subband (the pixel indices of Bj,k is out of the wavelet 

subband range), the coefficients are thresholded using 

the hard thresholding. The images used in the 

experiments are the 512×512 and 256 ×256 gray level 

standard images of Lena, Cameraman, Barbara and 

Peppers. The original images are shown in Fig. 4. The 

noisy images are obtained by adding the zero mean 

white Gaussian noise with a standard variance n (n＝

25) to the original images. Different neighborhood 

window sizes are used in the experiments. The 

symmlet wavelet with eight vanishing moments (sym8) 

and the decomposition level up to 3 are employed in 

the wavelet transform. The denoised results in Peak 

Signal to Noise Ratio (PSNR) are listed in Table 1. The 

PSNR is defined as equation (17) 

)
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   (17)  

Generally, with the size of the window increased, 

the number of involved neighboring coefficients 

increased, and the r-value becomes large. However, the 

large window size will result in the large boundary 

regions which needs to be thresholded by hard 

thresholding. That is to say, different size of the 

neighborhood window will lead to different denoising 

capabilities. According to Table 1, the neighborhood 

window sizes of 9×9, 11×11 and 13×13 are good 

choices. Especially for the size of 11×11, it provides 

the best results and is employed in our method.  

 

Fig. 3. The illustration of a small coefficient and its 

neighborhood windows. 

 

 

Fig. 4. Original images: (a) Lena, (b) Cameraman, 

(c) Barbara, (d) Peppers. 

Table 1. Denoised results (dB) of the proposed method with different window sizes. 

Image size 
 (pixel) 

PSNRin(dB)  
Window size (pixel) 

1×1 3×3 5×5 7×7 9×9 11×11 13×13 15×15 

Lena 

512×512 20.24  27.49  28.33  28.87  29.20  29.36  29.41  29.43  29.31  

256×256 20.25  24.60  25.45  25.98  26.37  26.56  26.64  26.66  26.30  

Cameraman 

512×512 20.56  27.58  28.73  29.32  29.64  29.82  29.86  29.86  29.64  

256×256 20.53  23.94  25.06  25.70  25.99  26.14  26.20  26.18  26.15  

Barbara 

512×512 20.24  23.69  24.39  25.02  25.50  25.84  26.07  26.22  26.17  

256×256 20.25  24.41  25.02  25.43  25.67  25.85  25.96  26.03  25.63  

Peppers 

512×512 20.44  27.24  28.11  28.56  28.75  28.81  28.65  28.52  28.15  

256×256 20.34  25.31  26.35  26.94  27.19  27.33  27.37  27.23  26.47  

Average 20.36 25.53 26.43 26.98 27.29 27.46 27.52 27.51 27.23  
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EXPERIMENTAL COMPARISON  

The adaptive shrink function method, soft 

thresholding, hard thresholding, and NeighShrink 

method are applied to denoise the same group of 

images to compare the denoising effect. The zero mean 

Gaussian white noise with different noise levels (=10, 

15, 20, 25, 30) are added to the noise-free images (Fig. 

4) to obtain the noisy images. The ‘sym8’ wavelet 

and the decomposition level up to 3 are also employed 

in the wavelet transform. 

 

 

RESULTS AND DISSCUSION 

DIRECT COMPARISONS 

The PSNR values of noisy images are depended on 

noise variances. The denoised images (noise level 

=20) and their zoomed local regions provided by four 

methods are illustrated in Fig. 5, 6, 7, and 8, 

respectively. The denoised results in PSNR are listed in 

Table 2.  

 

 

 

 

 

 

Fig. 5. The comparison of four methods on the 512×512 Lena with ＝20. (a) soft thresholding (27.10dB), (b) hard 

thresholding (28.30dB), (c) neighshrink (29.11dB), (d)our method (30.38dB); (e), (f), (g), (h) are the zoomed local 

regions of (a), (b), (c), (d), respectively. 
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Fig. 6. The comparison of four methods on the 512×512 Cameraman with ＝20. (a) soft thresholding (26.84dB), 

(b) hard thresholding (28.73dB), (c) neighshrink (29.31dB), (d)our method (31.22dB); (e), (f), (g), (h) are the 

zoomed local regions of (a), (b), (c), (d), respectively. 

 

 

 

Fig. 7. The comparison of four methods on the 512×512 Barbara with ＝20. (a) soft thresholding (23.45dB), (b) 

hard thresholding (24.32dB), (c) neighshrink (27.22dB), (d)our method (27.39dB); (e), (f), (g), (h) are the zoomed 

local regions of (a), (b), (c), (d), respectively. 
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Fig. 8. The comparison of four methods on the 512×512 Peppers with ＝20. (a) soft thresholding (26.82dB), (b) 

hard thresholding (28.16dB), (c) neighshrink (28.88dB), (d) our method (29.94dB); (e), (f), (g), (h) are the zoomed 

local regions of (a), (b), (c), (d), respectively. 

 

Table 2. PSNR values (dB) of the denoised images provided by four denoising methods. 

 
 Noisy image(dB) Soft thresholding Hard thresholding NeighShrink Our method 

Image size 

 (pixel) 
512×512 256×256 512×512 256×256 512×512 256×256 512×512 256×256 512×512 256×256 

Lena 

＝10 28.12 28.12 29.10 25.82 30.98 27.75 33.10 31.17 33.51 31.01 

＝15 24.63 24.57 27.87 24.82 29.37 26.36 30.79 28.88 31.65 28.85 

＝20 22.13 22.15 27.10 24.13 28.30 25.28 29.11 27.27 30.38 27.41 

＝25 20.25 20.24 26.53 23.63 27.51 24.59 27.76 25.94 29.36 26.43 

＝30 18.72 18.68 26.10 23.34 26.82 24.14 26.57 24.85 28.40 25.72 

Cameraman 

＝10 28.29 28.26 29.58 25.26 32.07 27.70 34.12 31.21 35.21 30.99 

＝15 24.88 24.85 27.95 23.99 30.12 25.99 31.41 28.79 32.86 28.80 

＝20 22.44 22.40 26.84 23.12 28.73 24.82 29.31 27.05 31.22 27.27 

＝25 20.57 20.61 26.01 22.53 27.56 24.02 27.73 25.73 29.80 26.34 

＝30 19.02 19.05 25.34 21.95 26.74 23.21 26.33 24.45 28.75 25.28 

Barbara 

＝10 28.12 28.11 25.28 25.37 27.69 26.90 31.42 30.55 31.44 29.77 

＝15 24.60 24.59 24.06 24.53 25.51 25.63 28.95 28.44 29.04 27.92 

＝20 22.17 22.17 23.45 24.07 24.32 24.92 27.22 27.01 27.39 26.81 

＝25 20.24 20.24 23.13 23.72 23.65 24.46 25.82 25.83 25.88 25.81 

＝30 18.72 18.72 22.92 23.44 23.27 24.00 24.78 24.73 24.73 25.27 

Peppers 

＝10 28.26 28.16 28.88 26.86 30.68 29.17 32.76 32.15 32.82 32.20 

＝15 24.78 24.64 27.67 25.50 29.29 27.33 30.64 29.60 31.12 29.88 

＝20 22.32 22.23 26.82 24.64 28.16 26.25 28.88 27.87 29.94 28.34 

＝25 20.44 20.29 26.15 24.01 27.23 25.33 27.53 26.27 28.81 27.28 

＝30 18.91 18.78 25.66 23.54 26.51 24.61 26.33 25.11 27.92 26.40 
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As shown in Fig. 5, 6, 7, and 8, the proposed 

method gave the best denoised results. The denoised 

images provided by the soft thresholding and the hard 

thresholding were blurred seriously, especially for the 

edge regions (Fig. 6 (e) and (f)) and the texture regions 

(Fig. 7 (e) and (f)). Both the proposed method and the 

NeighShrink scheme preserved the edges and the 

textures of the images very well. The details of the 

images are well preserved by the NeighShrink scheme, 

but the noise removal introduced some artifacts. These 

artifacts result in a bad smoothness, which can be seen 

from the zoomed local regions of the denoised images 

(Fig. 5 (g), Fig. 6 (g), Fig. 7 (g) and Fig. 8 (g)). The 

denoised images indicate that the details (around the 

eyes of Lena), the textures (the knee of Barbara), the 

sharp edges (around the camera of Cameraman), and 

the smooth regions (Peppers) are well preserved by the 

proposed method without introducing too many 

artifacts. 

According to Table 2, the output PSNRs of 

denoised images can be improved obviously by four 

methods. The results show that the proposed method 

outperforms the soft thresholding, the hard 

thresholding, and the NeighShrink scheme for all noise 

levels. The average gains of the proposed method are 

3.68dB, 2.28dB, 0.61dB, respectively.  Unlike the soft 

and hard thresholding, which set the small coefficients 

to zero, the proposed method adaptively changes the 

shrinkage functions to shrink the small coefficients. 

This is reason why the proposed method could give 

better gains than others. 

 

INDIRECT COMPARISONS 

In this part, the soft thresholding, the hard 

thresholding, and the proposed method are 

incorporated into the empirical wiener filtering and TI 

scheme for the denoising comparisons. These three 

methods are used in the first denoising process of the 

empirical wiener filtering and the shifted images’ 

denoising of the TI scheme. The experimental results 

can reflect the efficiency of our method by applying it 

to other denoising methods. For the empirical wiener 

filtering, the wavelet ‘sym6’ is used in the first wavelet 

transform and the wavelet ‘sym8’ is used in the second 

wavelet transform. Ten cyclic shifts are employed in 

the TI scheme. The denoised results in PSNR are listed 

in Table 3. 

According to the denoised results, our method 

combined with the empirical wiener filtering and TI 

denoising produced the highest PSNR values (shown as 

bold fonts).  It clarified that compared with the soft and 

hard thresholding, the proposed method is more 

effective when it is incorporated into other denoising 

methods. 

 

CONCLUSIONS 

A novel and effective image denoising algorithm 

which adaptively used different shrinkage functions to 

shrink different wavelet coefficients was researched in 

this paper. The number of the large coefficients, which 

neighbored with each small coefficient in an 11×11 

neighborhood window, is employed to determine the 

shrinkage function. The denoising results show that the 

proposed method is superior to soft threshold method, 

hard threshold method and NeighShrink scheme in 

detail representation and numerical results after 

denoising. The PSNR values resulting from the 

proposed new method are higher than that of resulted 

from the soft and hard thresholding. Moreover, the new 

method can obtain a better result when the customized 

wavelets, the adaptive threshold, the special modeling, 

etc. are employed.  
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Table 3. PSNR values (dB) of the denoised images provided by the empirical wiener filtering and TI scheme with 

three denoising methods. 

 

 
Noisy image 

(dB) 
Wiener (soft  
thresholding) 

Wiener (hard  
thresholding) 

Wiener (our  
method) 

TI (soft  
thresholding) 

TI (hard  
thresholding) 

TI (our  
method) 

Image size 
 (pixel) 

512×512 256×256 512×512 256×256 512×512 256×256 512×512 256×256 512×512 256×256 512×512 256×256 512×512 256×256 

Lena 

＝10 28.14 28.12 32.13 28.63 33.09 29.66 34.04 31.64 29.26 26.03 31.93 28.83 33.98 31.72 

＝15 24.62 24.63 30.46 27.03 31.58 28.17 32.25 29.32 28.02 24.91 30.20 27.09 32.10 29.37 

＝20 22.14 22.16 29.14 26.03 30.30 27.14 31.11 28.04 27.15 24.24 28.88 25.97 30.76 27.95 

＝25 20.25 20.25 28.27 25.34 29.34 26.27 30.15 27.05 26.63 23.72 28.07 25.12 29.78 26.94 

＝30 18.70 18.74 27.61 24.81 28.55 25.69 29.30 26.48 26.21 23.39 27.34 24.59 28.84 26.15 

Cameraman 

＝10 28.28 28.26 33.56 28.27 34.80 29.27 35.79 31.29 29.92 25.45 33.66 28.76 36.22 31.47 

＝15 24.87 24.87 31.64 26.63 32.65 27.57 33.50 29.24 28.21 24.08 31.35 26.90 33.66 29.29 

＝20 22.45 22.45 30.21 25.58 31.19 26.42 31.93 27.92 27.06 23.23 29.80 25.67 31.92 27.85 

＝25 20.53 20.54 28.89 24.56 29.87 25.48 30.56 26.64 26.13 22.56 28.46 24.65 30.39 26.56 

＝30 19.04 19.03 27.88 23.88 28.86 24.87 29.50 25.71 25.48 22.07 27.43 23.83 29.19 25.55 

Barbara 

＝10 28.13 28.15 27.65 27.51 29.11 28.43 32.03 30.07 25.42 25.53 28.80 27.72 32.50 30.27 

＝15 24.61 24.62 25.47 26.30 26.67 27.15 29.71 28.33 24.16 24.62 26.32 26.24 29.92 28.24 

＝20 22.14 22.19 24.38 25.57 25.15 26.31 27.96 27.23 23.53 24.14 24.84 25.43 28.04 27.05 

＝25 20.25 20.26 23.83 25.03 24.36 25.73 26.56 26.40 23.20 23.77 24.04 24.85 26.58 26.17 

＝30 18.71 18.73 23.50 24.57 23.83 25.19 25.20 25.74 22.99 23.49 23.53 24.38 25.17 25.50 

Peppers 

＝10 28.24 28.15 31.71 30.45 32.44 31.51 33.06 32.46 29.01 27.18 31.54 30.44 33.10 32.64 

＝15 24.76 24.62 30.27 28.43 31.09 29.54 31.44 30.17 27.78 25.63 30.06 28.29 31.41 30.25 

＝20 22.32 22.20 29.09 27.31 29.93 28.39 30.27 28.83 26.91 24.86 28.86 27.10 30.14 28.75 

＝25 20.45 20.32 28.13 26.20 28.93 27.37 29.30 27.95 26.27 24.16 27.83 25.99 29.04 27.76 

＝30 18.93 18.81 28.08 25.46 27.37 26.52 28.45 27.14 25.80 23.73 27.08 25.32 28.14 26.75 
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