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ABSTRACT

In this note we consider non-stationary cluster point processes and we derive their local intensity, i.e. the
intensity of the process given the locations of one or more events of the process. We then provide some
approximations of this local intensity.
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INTRODUCTION

The problem of conditioning is an old problem
in the point process theory. The conditional
distribution of the spatial point process Φ given
a realisation of some events of Φ was introduced
by Palm (1943) for stationary point processes on
the real line and recently summed up in Cœurjolly
et al. (2017) in the general case. Usually, authors
call conditional intensity λ (xo|Φ) the intensity
knowing that the point process is observed
everywhere else but xo. Here we consider locally
finite point processes Φ defined in a compact set
S ⊂ R2 and we focus on a different conditioning:
λ (xo|ΦW ), which is the intensity given the point
process is observed in W ⊂ S, but not in S\W .
Gabriel et al. (2017; 2022) refer to it as the spatial
local intensity of Φ, that they define by the limit
of E [Φ(dxo)|ΦW ]/|dxo| as |dxo| → 0, where |dxo|
denotes the area of dxo. The local intensity is
tractable for very few processes. Gabriel et al.
(2017) and Gabriel et al. (2022) define a “model-
free” predictor of λ (xo|ΦW ) for stationary and
non-stationary processes, in sense that it is only
related to the first and second-order moments of
the point process. In this note, we derive the local
intensity of non-stationary cluster point processes
and provide some approximations for practical
applications.

LOCAL INTENSITY OF NON-
STATIONARY CLUSTER POINT
PROCESSES

Cluster point processes, developed by
Neyman et al. (1958), are formed by a simple
procedure, with a homogeneous Poisson process
Ψ with intensity κ generating parent points at
a first step and a random pattern of offspring
points around each parent point at a second step.
The number of offspring points has a Poisson
distribution with mean µ and the offspring points
are independently and identically distributed
with a bounded support kernel k depending
on the distance from offspring to parent. The
cluster point process Φ̃ is the set of offspring
points, regardless their parentage. This process
is stationary with intensity λ̃ = κµ .

We focus on the p(x)−thinned process of
Φ̃, where p(x) is a deterministic function on R2

with 0 ≤ p(x) ≤ 1. If the point x belongs to
Φ̃, it is deleted with probability 1 − p(x) and
again its deletion is independent of locations and
possible deletions of any other points. Let Φ be the
p(x)−thinned process. The process Φ is second-
order intensity reweighted stationary with λ (x) =
κµ p(x) (see Chiu et al. (2013)).

Here we want to know the local intensity of
ΦS\W given ΦW . We denote ∂W the border of
the observation window W , with width defined
by the range of the dispersion kernel k, say r. In
other words, ∂W = W⊕r\W . Fig. 1 illustrates the
different steps of the generating procedure.
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Fig. 1: Generating procedure of the p(x)-thinned
cluster process. Parent points (Ψ =blue crosses)
are generated in the union of the observation
window W (white area) and ∂W (hatched area).
Offspring (Φ̃ =red dots) are generated within the
circle around the parent points (blue area). The
final process (Φ =black dots) is obtained by p(x)-
thinning. The window of interest S is delineated
in black. The prediction window is represented by
the grey shaded central square.

Proposition 1. For xo ∈ S\W, the local intensity
of a p(x)-thinned cluster process is:

λ (xo|ΦW )=
∫

W∪∂W
µ p(xo)k(y−xo)ρ(y|ΦW )dy

+µκ

∫
b(xo,r)\(W∪∂W )

p(xo)k(y− xo)dy, (1)

where b(xo,r) denotes the disc of centre xo and
radius r and ρ(y|ΦW ) is the intensity of parent
points in W ∪∂W given the offspring points in W.

The proof is rather straightforward as (i) for
a cluster process we know the intensity given
the realisation of parent points, (ii) the parent
process is Poisson, (iii) knowing the offspring
points in W is not informative on parent points in
b(xo,r)\(W ∪∂W ) and (iv) finally we get

λ (xo|ΦW ) =
∫ [

∑
y∈ΨW∪∂W

µ p(xo)k(y− xo)

+µκ

∫
b(xo,r)\(W∪∂W )

p(xo)k(y− xo)dy
]

×dP[ΨW∪∂W |ΦW ],

that leads to (1) by Campbell’s theorem (Chiu et
al., 2013).

Baudin (1983) derived the following formula
for ρ(y|ΦW ) for Neyman-Scott processes:

ρ(y|ΦW ) = κG(1−F(Wy))

+
2n−1

∑
j=1

∑
b∈B

b(a j)
2n−1

∏
i=1

S(Φ,W,ai)
b(ai)

×

[
κG|a j| (1−F(Wy))∏

n
ℓ=1 k(xℓ− y)a jℓ

S(Φ,W,a j)

]b(a j)

×

[
∑

b∈B

2n−1

∏
i=1

S(Φ,W,ai)
b(ai)

]−1

, (2)

where

• G is the probability generating function of the
number of points in a cluster,

• F(dx) is the probability distribution of
offspring points, with density k,

• {x1, . . . ,xn}= ΦW ,
• Wy =−y+W ,
• a1 = (0, . . . ,0,1), a2 = (0, . . . ,0,1,0), . . . ,

a2n−1 = (1, . . . ,1): vectors of length n,
• B is the set of all functions b :

{a1, . . . ,a2n−1} → {0,1} such that
∑

2n−1
i=1 b(ai)ai = (1, . . . ,1), ai = (ai1, . . . ,ain),

|ai|= ai1 + · · ·+ain,

• S(Φ,W,ai) = κ
∫

G|ai|(1−F(Wy))

×∏
n
ℓ=1 k(xl − y)aiℓdy.

However, this intensity is based on combinations
and is just too complicated in practice. van
Lieshout et al. (1943) interpreted the problem of
identifying parent points as a statistical estimation
problem with a Bayesian inference based on
MCMC methods; see also (lawson, 2002) for
similar approaches.

Here we propose to approximate it as follows,

ρ̂(y|ΦW ) =
c(y)

µ p(y) ∑
x∈ΦW

k(x− y)

+κ exp
(
−µ

∫
W

p(z)k(y− z)dz
)
, (3)

where c(y) ensures that E [ρ(y|ΦW )] = κ . The
heuristic behind this approximation is that it
depends on both the offspring observed in W
(first term) and the unobserved offspring due to
thinning or their proximity to the boundary of W
(second term).
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VALIDATION PROCEDURE

In this section, we aim at comparing parent
points with intensity ρ̂(y|ΦW ) and those of
the original thinned Matérn cluster process,
hereafter we call the latter observed parent points.
We thus use complementary statistics to test
the interactions (i) between parent points, (ii)
between parent and offspring points and (iii)
between parent points and the inner (or outer)
boundary of W . Let Φ(A) (resp. Ψ(B)) be the
number of points of Φ in a Borel set A (resp. of
Ψ in B). We denote ΨS the observed parent points
in S and ν(B) the Lebesgue measure of B. Then,

(i) Interaction statistic between parent points

Let Ĥ(d) be the empirical cumulative
distribution function between observed parent
points ΨS and H(d) the theoretical one:

Ĥ(d) =
1

Ψ(S)

̸=

∑
y1,y2∈ΨS

I{∥y1−y2∥≤d},

H(d) =
1∫

S ρ(y|ΦW )dy

∫
S

∫
b(z,d)∩S

ρ(y|ΦW )

×ρ(z|ΦW )dydz.

(ii) Interaction statistic between parent and
offspring points

Let Ê(d) be the empirical cumulative
distribution function between observed parent
points ΨS and observed offspring points ΦW and
E(d) the theoretical one:

Ê(d) =
1

Φ(W ) ∑
x∈ΦW

∑
y∈ΨS

I{∥x−y∥≤d},

E(d) =
1

Φ(W ) ∑
x∈ΦW

∫
b(z,d)∩S

ρ(z|ΦW )dz.

(iii) Interaction statistic between parent points
and the boundary, denoted bW , of W

Let B̂(d) be the empirical cumulative
distribution function between observed parent
points ΨS and the inner boundary (bW =
W\W⊖r = Binner) or outer boundary (bW =
W⊕r\W = Bouter) of W , and B(d) the theoretical
one:

B̂(d) =
1

ν(bW ) ∑
y∈ΨS

∫
bW

I{∥ℓ−y∥≤d}dℓ

=
1

ν(bW ) ∑
y∈ΨS

ν(bW ∩b(y,d)),

B(d) =
1

ν(bW )

∫
bW

∫
b(ℓ,d)∩S

ρ(z|ΦW )dzdℓ.

We illustrate the results for a thinned Matérn
cluster process Φ. For this process, k is the
uniform distribution on the disc of radius r and
the local intensity is

λ (xo|ΦW )=
µ p(xo)

πr2

∫
b(xo,r)∩(W∪∂W )

ρ(y|ΦW )dy

+
κµ p(xo)

πr2 ν (b(xo,r)\(W ∪∂W )) ,

with

ρ(y|ΦW ) =
1

µ p(y)πr2 ∑
x∈ΦW

Ib(x,r)(y)

+κ exp
(
− µ

πr2

∫
b(y,r)∩W

p(z)dz
)
.

The non-stationary Matérn cluster process
Φ depends on four parameters: the thinning
probability p(x), the intensity of parents κ , the
mean number of points per parent µ and the radius
of dispersion of the offspring around the parent
points r. Here we fix κ = 50 and µ = 40 and we
consider:

- two thinning probabilities: p1(x) = p1(x1,x2) =
α1I{x1≤v}+α2I{x1>v}, setting α1 = 0.8, α2 = 0.2
and v = 0.5, and p2(x) = p2(x1,x2) = 1− x1.

- the unit square as study region S. The
observation window is W = S\Wh, where Wh =
[0.35,0.65]2 when using p1(x) and Wh =
[0.05,0.95]× [0.36,0.64] when using p2(x).

- r ∈ {0.05,0.09,0.13}.

For each pair of parameters (p(x),r) we simulate
N = 250 realisations of the non-stationary Matérn
cluster process and compute all the previous
interaction statistics, that we denote by Ĥ(d),
Ê(d) and B̂(d). For each of these N realizations,
we generate n = 100 simulations of parent points
from a Poisson process with intensity ρ(y|ΦW )
and compute the related empirical statistics, that
we denote by Ĥsim(d), Êsim(d) and B̂sim(d). Fig. 2
illustrates the 95% envelopes of the empirical
statistics computed from the N observed parent
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points (red hatching) and from the N×n simulated
parent points (blue hatching). The grey envelopes
correspond to the theoretical statistics. In this
figure p(x) = p1(x) and r = 0.09.

(a) Interactions between parent points.

(b) Interactions between parent and offspring
points.

(c) Interactions between parent points and the inner
boundary of W .

(d) Interactions between parent points and the outer
boundary of W .

Fig. 2: 95% envelopes of the cumulative
distribution functions calculated for N realisations
of the thinned Matérn cluster process (empirical
is in red hatching and theoretical is in grey) and
for simulated parent points (blue hatching). The
curves represent the cover rates τ1(d) (solid) and
τ2(d) (dashed).

Results for all pairs of parameters are very
similar. All overlapping envelopes indicate that
the statistics are similar for the observed parent
points ΨS and for simulated parent points, which
further correspond to the theoretical distribution.
This is true at any distances and shows that
the main characteristics of the approximated
distribution of parent points in S given the
offspring points in W provided in (3) include those
of the original distribution of parent points in S.

For each type of interaction, we computed the
global coverage rates between the envelopes
obtained from the observed distribution of parent
points and the envelopes obtained from the
approximated distribution of parent points. E.g.,
denoting by E the envelopes, the coverage rates
for the interaction statistic between parent points
are

τ1(H) = ν

(
E (Ĥ)∩E (Ĥsim)

)
/ν

(
E (Ĥ)

)
and

τ2(H) = ν

(
E (Ĥ)∩E (Ĥsim)

)
/ν

(
E (Ĥsim)

)
.

Results for all combination of parameters (p(x),r)
are reported in Table 1. The coverage rates are
also computed according to the distance and
plotted in Fig. 2 (τ1(d) in solid line and τ2(d)
in dashed line, that are one-dimensional versions
of τ1(H) and τ2(H)). These results show that
for any configuration and interaction range the
approximation procedure of the local intensity of
parent points in W ∪∂W given the offspring points
in W is conservative.

CONCLUSION

In order to quantify discrepancies between
true local intensities and estimated ones (as in
Gabriel et al. (2022)), we have to both know
the local intensity and to get fast computations
to browse the space of conditioning realisations.
Because existing methods are computationally
intensive, not allowing many simulations, instead
of simulating the local intensity we proposed
to consider an approximating process, whose
deviation to the true process can be controlled. We
thus propose this approximation if one needs a fast
procedure, even if conservative.
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Table 1: Coverage rate between the envelopes
of the interaction statistics computed from the
observed parent points and from the simulated
parent points.

r 0.05 0.09 0.13
p1(x)

τ1(H) 88.04 93.48 98.73
τ2(H) 53.66 64.82 69.81
τ1(E) 97.30 97.40 99.91
τ2(E) 67.75 71.43 74.68

τ1(Binner) 100.00 99.86 100.00
τ2(Binner) 87.75 78.21 81.69
τ1(Bouter) 100.00 100.00 100.00
τ2(Bouter) 81.63 72.37 74.30

p2(x)
τ1(H) 90.07 96.83 99.37
τ2(H) 58.31 68.22 77.97
τ1(E) 97.72 96.24 90.65
τ2(E) 70.11 69.63 79.14

τ1(Binner) 100.00 100.00 100.00
τ2(Binner) 84.36 88.02 85.92
τ1(Bouter) 100.00 100.00 98.57
τ2(Bouter) 78.94 70.43 69.06
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