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ABSTRACT

A spatial point pattern is a collection of points in space, representing, e.g. observed locations of trees, bird
nests, centers of cells in a histological sample, etc. When several independent realizations of the underlying
stochastic process are observed, these realizations are referred to as replicated point patterns. The main
objective of this paper is to classify a newly observed pattern into one of the existing classes using a supervised
nonparametric classification method, namely the Bayes classifier in combination with the k-nearest neighbors
algorithms and the kernel regression method. The dissimilarity between a pair of patterns is defined using the
functional summaries extracted from the point patterns via the Cramér-von Mises or Kolmogorov-Smirnov
type formula. A set of simulation experiments is presented to investigate the performance of the proposed
classifier with a dissimilarity measure based on functional summaries, such as the pair correlation function.
The application of such a classifier to a real point pattern dataset is also illustrated.

Keywords: dissimilarity measures, kernel regression, spatial point patterns, supervised classification.

INTRODUCTION

Spatial point processes are mathematical models
that describe the arrangement of objects randomly
placed in space. Such models are of particular interest
in many scientific disciplines, including biology,
ecology, statistical physics, or material science (Illian
et al., 2004, Sect. 1). We distinguish between
the theoretical model, called point process, and its
realization, a deterministic configuration of points,
called point pattern. In practice, point patterns are
observed in a bounded observation window. Three
different point patterns can be seen in Fig. 1.
Individual points represent locations of the centres
of intramembranous particles of the mitochondrial
membranes of the human HeLa cell line. These
patterns were observed during the analysis of the HeLa
cell line via the freeze-fracture technique (Schladitz
et al., 2003). It has become a standard approach to
use functional summary statistics instead of univariate
ones in all steps of statistical analysis of point patterns,
from exploratory analysis through model fitting to
hypothesis testing.

Supervised classification is one of the fundamental
problems in statistics and machine learning. Early
work on classification and statistical learning in
general dates back to Fisher and the linear discriminant
rule (Fisher, 1936; 1938). A collection of labelled
observations, called a training set or training data,
is available in supervised classification. The label

indicates the affiliation of the given observation to one
of the G possible classes. Based on the training data,
the task is to assign a label to a new observation.

In the point pattern literature, the term
classification usually refers to the procedure
of labelling individual points within a single pattern
generated by a superposition of several point processes
(Dasgupta and Raftery, 1998; Redenbach et al.,
2015; Walsh and Raftery, 2005). This corresponds
to the typical setting of spatial statistics, where a single
point pattern, obtained by some physical measurement,
is analyzed. This paper focuses on a different context:
replicated point patterns. This means that the observed
dataset consists of a collection of point patterns
that need to be analyzed simultaneously rather than
individually.

For replicated point patterns, supervised
classification has been studied to a limited extent.
In (Cholaquidis et al., 2017), the patterns generated
by inhomogeneous Poisson point processes with
different intensity functions were classified. The
task of classifying replicated point patterns is
transformed in (Mateu et al., 2015), with the help
of multidimensional scaling, to the classification task
in R2 and then solved with the help of Fisher’s
linear discriminant analysis. Parametric supervised
classification is reviewed in (Vo et al., 2018);
this approach is also called model-based learning.
Unsupervised classification is explored in (Ayala et
al., 2006). Note that we focus here only on spatial
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Fig. 1. Point patterns represent centres of intramembraneous particles of mitochondrial membranes from HeLa
cells under three different conditions: exposition to sodium acid (left), normal conditions (middle), and exposition
to rotenone (right). The observation window is the square with a side length of 336 nm.

point patterns, and thus point patterns on the real
line are disregarded. For a discussion about the one-
dimensional setting, see e.g. (Tranbarger Freier and
Schoenberg, 2010; Victor and Purpura, 1997).

In this paper, we propose a general classification
method that can be used for both stationary and
nonstationary point processes in Rp and can be
further generalized to more complicated settings (point
patterns in non-Euclidean spaces, random sets, random
tessellations, etc.). For ease of exposition, we present
the methods only for stationary point processes in R2.
We use the Bayes classifier in combination with
the k-nearest neighbors algorithms and the kernel
regression method. We need a mapping measuring
dissimilarities between two point patterns to construct
such classifiers. A summary of such mappings is given
in (Mateu et al., 2015; Alba-Fernández et al., 2016).

We pay special attention to dissimilarity measures
based on functional summaries, e.g. the pair
correlation function extracted from the point patterns.
So instead of comparing the patterns directly, we
compare the extracted features in the form of
functional data, and we can use well-established
methods from functional data analysis, described, e.g.
in (Ferraty and Vieu, 2006).

The complexity of the distribution of the considered
point process models and their corresponding
functional summary characteristics makes it highly
challenging, if not impossible, to study the properties
of the classifiers analytically. Thus, the behavior
of the kernel regression classifier is explored through
a simulation study. It is oriented towards the situation
where the groups represent different parametric
families of point process models (and hence different
nature of spatial interactions) or the same parametric
family with varying values of the model parameter.

As an example of real data, we analyze a collection
of point patterns representing the intramembranous

particles of the mitochondrial membranes of the
human HeLa cell line. Three different classes are
considered: the cell line exposed to sodium acid,
the cell line under normal conditions, and the cell
line exposed to rotenone. We aim to predict the
class membership for a new observation based on
the training set of labelled patterns. Examples of one
pattern from each class can be seen in Fig. 1.

This paper is organized as follows. We start with a
brief description of the three point process models that
will be used in the simulation experiments. Next, we
present several choices for the dissimilarity measure.
The main contribution of the paper lies in the analysis
of the performance of the proposed classifier on
simulated point pattern data. Before describing the
experiments themselves, we give the background on
the Bayes classifier and the kernel regression method.
In addition, we discuss some of the computational
aspects of our simulations. The simulation experiments
are complemented with an illustrative application to
the HeLa cell line data. Finally, we close the paper with
some concluding remarks.

SPATIAL POINT PROCESSES

This section briefly describes the point process
models used in the sequel. Related necessary
definitions are given. For the foundations of the
point process theory, see, e.g. (Daley and Vere-
Jones, 2008). A comprehensive discussion about
summary characteristics and feature extraction for
point processes can be found in (Møller and
Waagepetersen, 2004).

Throughout this paper, we restrict ourselves to
point processes (random locally finite sets) in the
plane. However, all the definitions and statements
below can be easily reformulated for a general
dimension p. Point process X is said to be stationary
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if its distribution is invariant under translations.
Moreover, X is said to be isotropic if its distribution
is invariant under rotations around the origin. We
suppose that the intensity function of X exists, that
is, the expected number of points of X in a Borel set
B ⊆ R2 can be written as

∫
B λ (y) dy, where λ (the

intensity function) is nonnegative and measurable. If
X is stationary, then λ (y) = λ > 0 for all y, and the
constant λ is called intensity. The pair correlation
function g is defined by

g(x,y) =
λ (2)(x,y)
λ (x)λ (y)

, x,y ∈ R2, λ (x),λ (y)> 0.

In case λ (x) = 0 or λ (y) = 0, we set g(x,y) = 0. The
function λ (2)(·, ·) is the Radon-Nikodym derivative
(with respect to the four-dimensional Lebesgue
measure) of the second-order factorial moment
measure (Møller and Waagepetersen, 2004). Loosely
speaking, λ (2)(x,y) indicates how likely it is to
observe two points together that occur in infinitely
small neighbourhoods of x and y, respectively.
With slight abuse of the notation, we write
g(x,y) = g(x− y) whenever g is translation invariant.
If g is also invariant under rotations around the origin,
we write g(x,y)= g(∥x− y∥) , x,y∈R2. From now on,
we suppose that g is defined for X , and is, moreover,
motion invariant. These assumptions imply that g
is a function of one argument r that represents the
Euclidean distance between two points in the process.

The Poisson point process is a benchmark
point process model. It is used to model situations
with no spatial interactions among the points.
Since λ (2)(x,y) = λ (x)λ (y), x,y ∈ R2 (Møller and
Waagepetersen, 2004, Sect. 4.1), the pair correlation
function g≡ 1 is a constant function. The value of g for
the Poison point process can be used as a benchmark
in the following way. Let us have the formula for
g derived for another point process model. Then,
values above 1 indicate aggregation of points, and
values below 1 indicate repulsive interactions. In the
sequel, the term Poisson point process always stands
for a stationary Poisson point process with constant
intensity λ > 0. The process will be denoted by Π(λ ).

The Thomas process is one of the basic models
for aggregation of points. It was introduced in
(Thomas, 1949) in the context of ecological surveys.
A triplet of parameters (if we impose the stationarity)
characterizes the model. First, we need to specify
the intensity κ of the underlying stationary Poisson
process that models (unobserved) parental points.
Then, we need to set the mean number µ of offspring
points per parent. These points are the observed ones.
Finally, the scale parameter σ of the bivariate Gaussian

density that controls the spatial distribution of the
offspring points around a parent must be specified.
The resulting process is stationary, with an intensity
equal to the product κµ . For details, see (Møller
and Waagepetersen, 2004, Sect. 5.3). The analytical
formula for g is known:

g(r) = 1+
1

4πσ2κ
exp

{
− r2

4σ2

}
, r > 0. (1)

From equation (1), we see that for all r, g(r) > 1. In
the sequel, the process will be denoted by Φ(κ,µ,σ).

The Gaussian determinantal point process is a
member of the family of the determinantal point
processes (DPPs), which have been studied in
mathematical physics, combinatorics, and random
matrix theory for several decades. The general
notion was introduced in 1975 in (Macchi, 1975).
A detailed overview of the theory of DPPs is given
in (Lavancier et al., 2015). A DPP models repulsive
interactions. Roughly speaking, the process is
defined by specifying the Radon-Nikodym derivatives
for the factorial moment measures of all orders
with the help of a Gaussian covariance function
C0(u) = θ exp

{
−∥u/α∥2

}
, u ∈ R2. Here, θ > 0 and

0 < α ≤ αmax, where αmax is a known constant given
by αmax = 1/

√
πθ . Again, the formula for g is known:

g(r) = 1− exp
{
−2r2

α2

}
, r > 0. (2)

Equation (2) shows that the pair correlation function
is always below the benchmark value for the Poisson
point process. In the sequel, the process will be
denoted by Ψ(θ ,α). Sample realizations of the three
models can be found in Fig. 2.

DISSIMILARITY MEASURES

In this section, we are looking for a map d
that takes two point patterns and returns a number
quantifying how dissimilar the two point patterns are.
It has to meet the following conditions:

(i) d(X,Z)≥ 0,
(ii) d(X,Z) = d(Z,X),
(iii) d(X,Z)≤ d(X,U)+d(U,Z),

where U,X and Z represent different point patterns.
An overview of the dissimiliraty measures for point
patterns is given in (Mateu et al., 2015; Alba-
Fernández et al., 2016).

Starting with the dissimilarity measures that are
based on pattern matching, the Hausdorff distance is
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Fig. 2. Realization of Ψ(θ ,α), Π(λ ) and Φ(κ,µ,σ) respectively. The observation window W is the unit square
[0,1]2, λ = 120, κ = 20, µ = 6, σ = 0.04, θ = 120 and α = 0.05. Parameters are chosen so that the three models
have the same intensity.

defined as

dH(X,Z) = max{∆(X,Z) ,∆(Z,X)} ,
∆(X,Z) = sup

x∈X
inf
z∈Z

∥x− z∥,

∆(Z,X) = sup
z∈Z

inf
x∈X

∥z− x∥.

In particular, it takes the maximum of the maximal
Euclidean distance from a point in X to its nearest
neighbour in Z and vice versa. In this case, dH is a
metric, so dH(X,Z) = 0 if and only if the two point
patterns coincide. However, its use is reasonable only
if the two investigated patterns are observed in the
same observation window. To achieve a low value,
dH forces the two configurations to have points at
very similar locations, and hence high values can
be seen even for two realisations coming from the
same model. Modifications of dH have been proposed
in (Hoffman and Mahler, 2004; Schuhmacher et al.,
2008; Cholaquidis et al., 2017), but none of them is
the actual remedy for this problem. In special cases and
assuming stationarity and isotropy, it may be relevant
to consider dH(X,Z

⋆) instead of dH(X,Z), where Z⋆ is
the element of the set of all translations and rotations
of Z such that dH (X,Z⋆) is minimal.

Another group of dissimilarity measures is based
on feature matching. Important information (called a
feature) about the distribution of the stochastic process
that generated the pattern at hand is extracted from the
pattern using a point process summary characteristic.
In what follows, we focus on functional summaries
such as the pair correlation function.

Let us now fix the functional characteristic f . For
r > 0, let f̂ (X,r) be the value of f (r) estimated from
the point pattern X. We define the integral dissimilarity
measure for two point patterns X, Z based on the
functional characteristic f as

dint( f ,X,Z) =
∫ R

0
| f̂ (X,r)− f̂ (Z,r)|2 dr, (3)

where R is a given constant depending on the size and
shape of the observation window W . If W is the unit
square, a popular rule of thumb leads to the choice
R = 0.25. In real-life applications, the observation
window W can be rather complicated. Then, any
general recommendation for the choice of R would be
counterproductive. Expert knowledge of the problem
at hand should play the primary role in deciding which
ranges of r are relevant for distinguishing the groups
of patterns.

The expression (3) resembles the Cramér-von
Mises statistic from the goodness-of-fit tests in the
classical statistics with i.i.d. observations. In the
point process literature, similar expressions appear
in the theory of parameter estimation (Møller and
Waagepetersen, 2004, Sect. 10.1). Moreover, (3) is
used to quantify the dissimilarities between point
patterns in the stochastic reconstruction procedure
for point patterns (Koňasová and Dvořák, 2021;
Tscheschel and Stoyan, 2006). In (Mateu et al., 2015),
a dissimilarity matrix with entries computed as in (3)
is plugged into a multidimensional scaling procedure,
resulting in a representation of the collection of
observed point patterns by a collection of points in R2.

The maximum absolute deviation counterpart of
dint , resembling the Kolmogorov-Smirnov statistic, is
then defined as

dsup( f ,X,Z) = sup
r∈[0,R]

| f̂ (X,r)− f̂ (Z,r)|.

Both dint and dsup are derived from semi-metrics
commonly used in functional data analysis. They can
be used even when the two investigated patterns are
observed in different observation windows. The use
of edge correction factors in the estimators of the
functional summary characteristics reduces the impact
of the size and shape of the observation window on the
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value of the estimate. However, the constant R has to
be chosen with care.

An ideal dissimilarity measure d(X,Z) would have
small values whenever the probability distributions
of the stochastic processes that generated X and
Z, respectively, are very similar. Our dissimilarity
measures dint and dsup are based on matching the
second-order properties of the point processes that
generated X and Z. One should have in mind
that two point processes with different probability
distributions can have the same form of the second-
order characteristics; see e.g. Baddeley and Silverman
(1984). In other words, two (visibly different) point
patterns generated by models with different probability
distributions can have zero dissimilarity dint or dsup.
This is a deeper issue than the fact that dint and dsup
are not metrics. However, if such a situation would be
encountered in a practical application, the user would
choose a different summary characteristic instead, e.g.
one based on interpoint distances, which would be
able to distinguish the different groups in the training
dataset.

For some applications, the need to use more than
one characteristic to extract the essential features
of the probability distribution may arise. Combining
multiple integral or maximum absolute deviation
terms into a weighted sum is possible. Choosing
appropriate weights is a complex problem that usually
deserves some preliminary exploratory analysis and
expert knowledge. Another possibility is to use
the dissimilarity measure described in (Dai et al.,
2021) which allows combining multiple characteristics
without the need to weigh the individual terms.

SUPERVISED CLASSIFICATION

This section gives an overview of the two
classification methods used in the sequel. A list of
related theoretical results available in the literature is
included in Sect. S10 of the Supplementary material
accompanying this paper.

Suppose that a point pattern X is observed in a
bounded observation window W , |W |> 0. We assume
that this pattern was generated by a stationary point
process X , for which we can define the pair correlation
function. Take G ∈ N. Let Y be the label, i.e.,
a random variable with values in G = {1,2, . . . ,G}
representing the affiliation to one of the G possible
groups. We consider X and Y as a random pair (X ,Y )
and aim at predicting the value of the label variable
Y , given the realization X of the point process X .
Since we are talking about supervised classification,
our decision about the value of Y is based on

the knowledge of training data, i.e., a collection of
point patterns with known labels. In other words,
let TN = {(Xi,Yi), i = 1,2, . . . ,N} be a set of N ≥ 1
independent realizations of (X ,Y ). We call TN the
training set or the training data. From now on, we
suppose that the dissimilarity measure d in hand is
chosen so that ties do not occur. Suppose the expert
knowledge about the analysed data indicates that the
choice of d can lead to ties. In that case, one should
consider changing the dissimilarity measure, e.g. using
a different functional summary.

The classification task can also be viewed as the
search for a classification rule ϕ , which assigns a label
ϕ(X) to a point pattern X. If we know the conditional
probabilities pg(X) = P [Y = g | X = X] , g ∈ G, we
can construct the so-called naive Bayes classifier

ϕBayes(X) = argmax
g∈G

pg(X).

However,
{

pg, g ∈ G
}

are usually not known in
practical applications. The crucial step when building
up a classification rule is thus the estimation of these
conditional probabilities, based on our knowledge of
the training data TN . Let X be a new pattern whose
label is to be predicted. In the following, we will
restrict our attention to the estimators of

{
pg, g ∈ G

}
in the form

p̂g(X) = ∑
{i: Yi=g}

ωi(X) , (4)

where {ωi(X), i = 1,2, . . . ,N} are nonnegative
weights, depending on the new observation X and the
training set TN . The weights should be chosen in such
a way that for all g ∈ G and X

0 ≤ p̂g(X)≤ 1, ∑
g∈G

p̂g(X) = 1. (5)

In this paper, we focus on the weights derived from
the kernel regression method. The method is presented
in the context of functional data analysis in (Ferraty
and Vieu, 2006, Sect. 8.2). Let K : R −→ R+ be
a symmetric function such that

∫
R K(u) du = 1. We

will call such a function a kernel. Moreover, let the
support of K be [−1,1]. Note that our assumptions
imply that

∫
R uK(u) du = 0. One of the classical

examples of this function is the Epanechnikov kernel
K(u) = (3/4)(1 − u2),u ∈ [−1,1] and K(u) = 0
otherwise. For i ∈ {1,2, . . . ,N} we set

ωi,h(X) =
K
(
h−1d(X,Xi)

)
∑

N
j=1 K(h−1d(X,X j))

, (6)

where h > 0 is a smoothing parameter, also called
bandwidth. Note that if d(X,Xi) > h, then the weight
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corresponding to the pattern Xi is 0. Equation (6)
in fact corresponds to the Nadaraya-Watson estimate
for a categorical response variable in the context of
local polynomial regression. The classification rule
based on the Nadaraya-Watson type of weights will
be denoted by ϕNW (· | TN ,d,K,h). The corresponding
weights

{
ωi,h(X), i = 1,2, . . . ,N

}
sum up to 1 and the

conditions in (5) are met.

Three different features have to be chosen by
the user; the kernel K, the dissimilarity measure d,
and the value of the smoothing parameter h. As is
typical for kernel methods, the choice of the kernel
function K is not crucial. Regarding the dissimilarity
measure, we will restrict our attention to the three
examples listed in the previous section. Note that the
integral dissimilarity measure dint corresponds to the
framework of discrepancy measures for functional data
presented in (Ferraty and Vieu, 2006, Sect. 3.4).

For the choice of bandwidth, one needs to deal with
the problem of selecting h among an infinite set of
positive values. To overcome this issue, we replace h
with hk such that only k terms in (4) contribute to the
final sum with nonzero weights. In other words, we
want to choose hk so that there are exactly k elements
X j1 , . . . X jk in the training set TN such that

d
(
X,X jl

)
hk, l ∈ {1, . . . ,k}, (7)

d(X,Xt)hk, t ∈ {1, . . . ,N}\{ j1, . . . , jk}.

For the choice of k, three different approaches can be
considered.

Fixed value The parameter k is considered fixed
and the decision about its value has to be based on
our prior knowledge of the problem at hand. For
each new observation X, we order the dissimilarities
d1 = d(X,X1), . . . ,dN = d(X,XN) so that
d(1) < d(2) < .. . < d(N). We set hk = (d(k)+d(k+1))/2.
This choice of hk fulfils condition (8).

Global cross-validation This approach is based
on the leave-one-out cross-validation procedure. For
i = 1,2, . . . ,N, denote by T

(−i)
N a modified set of the

training data TN , where we omit the i-th observation
(Xi,Yi). The point pattern Xi is considered as a
new observation, and we predict its label. We build{

p̂(−i)
g,hi

k
(Xi), g ∈ G

}
, using formulas (4), (6) and

the new training data set T
(−i)
N . The bandwidth

hi
k is chosen so that hi

k = (di
(k) + di

(k+1))/2, where
di
(1) < .. . < di

(N−1) is the ordered collection of
dissimilarities{

d(Xi,X j) , j ∈ {1, . . . ,N}\{i}
}
.

Then, we estimate the label of Xi as

ϕNW (Xi | T(−i)
N ,d,hi

k) = argmax
g∈G

p̂(−i)
g,hi

k
(Xi).

We define the global loss function GCV :
{1,2, . . . ,N −1} −→ [0,1] by

GCV (k) =
1
N

N

∑
i=1

1
{
Yi ̸= ϕNW (Xi | T(−i)

N ,d,hi
k)
}
.

The parameter k is chosen as a solution of an
optimization problem

kGCV = argmin
k ∈ {1,2,...,N−1}

GCV (k).

This choice of k is called global since kGCV does
not depend on the new observation X. Finally, the
new observation X is classified using the estimated
conditional probabilities

{
p̂g,hkGCV

(X), g ∈ G
}

, where
hkGCV = (d(kGCV ) + d(kGCV+1))/2. This procedure is
described in (Ferraty and Vieu, 2006, Sect. 7.1.1).

Local cross-validation We now include the new
observation X in the procedure of finding the optimal
value of k. Let us define the local loss function

LCV : {1,2, . . . ,N −1}×{1,2, . . . ,N} −→ R+

as

LCV (k, i) = ∑
g∈G

[
1{Yi = g}− p̂(−i)

g,hi
k
(Xi)

]2

.

For each observation Xi in the training set TN , the local
optimal value kLCV (Xi) is then found as a solution to
the optimization problem

kLCV (Xi)= argmin
k ∈ {1,2,...,N−1}

LCV (k, i), i∈{1,2, . . . ,N} .

Let i0 = i0(X) be the index of the nearest neighbour of
X in the training set TN , that is,

i0 = argmin
i = 1,2,...,N

d(X,Xi).

Then, we use the value kLCV (X) = kLCV (Xi0) to

build up the probabilities
{

p̂g,hkLCV (X)
(X) , g ∈ G

}
.

The local cross-validation procedure is described in
(Ferraty and Vieu, 2006, Sect. 8.3).

Note that if we set K as the uniform kernel
K(u) = 1/2, u ∈ [−1,1], instead of the Epanechnikov
kernel, then the weights

{
ωi,hk(X), i = 1,2, . . . ,N

}
are

of the form

ωi,hk(X) = ωi,k(X) =


1
k
, if d(X,Xi)≤ d(k),

0, otherwise.
(8)
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The classification rule based on this choice of weights
is called the k-nearest neighbors classifier. It can be
easily seen that the estimated probabilities p̂g,k(X),
obtained by plugging these weights in (4), meet the
conditions (5). The parameter k can be fixed, or it can
be learned from the training set TN using global or
local cross-validation. Together with the dissimilarity
measure dH , the k-nearest neighbours classifier is used
in (Cholaquidis et al., 2017) to classify realizations of
inhomogeneous Poisson point processes with different
intensity functions.

SIMULATION EXPERIMENTS

In the next sections, the performance of the Bayes
classifier in combination with the k-nearest neighbors
algorithms and the kernel regression method will be
examined in the context of replicated point patterns.
Three simulation experiments will be presented. First,
we compare the performance of the proposed classifier
with respect to the different choices of the underlying
dissimilarity measure. Second, the proposed method
is compared with the approach suggested in (Mateu
et al., 2015), which uses multidimensional scaling to
transform the problem into a classification task in 2D.
Finally, we explore the situation where the groups
correspond to the realizations from the models of the
same parametric family but with different values of the
model parameter. For ease of exposition, our attention
is restricted solely to binary classification.

This section serves as a detailed description of
the practical aspects of our simulation experiments,
such as the methodology for assessing the quality of
performance of individual classification rules or the
exact setting of the computational environment.

Classification rules In the following
experiments, we consider the classification rule to be
the ϕNW . We fix K as the Epanechnikov kernel and
use the automatic choice of the bandwidth; h = hkLCV
is found by the k-nearest neighbors algorithm with the
local choice of k. We write

ϕ(· | T,d) = ϕNW
(
· | T,d,K,hkLCV

)
to highlight the impact of the training set T and the
dissimilarity measure d. If, for example, we fix T and
consider two different dissimilarity measures d1 and
d2, then ϕ(· | T,d1) and ϕ(· | T,d2) are referred to as
two different classification scenarios.

Misclassification rate The performance of a
given classification rule ϕ is determined using the
misclassification rate. Take TN , N ∈ N, the training
set. To calculate the misclassification rate, another

set of labelled patterns is needed. Denote the testing
set, that is, a collection of patterns with known
labels, by ΓM =

{
(X̃ j, Ỹ j), j = 1,2, . . .M

}
, M ∈ N.

Note that TN and ΓM should include different
observations. Given the training and the testing set,
the misclassification rate γ

(
ϕ | TN ,ΓM

)
is computed

as

γ
(
ϕ | TN ,ΓM

)
=

1
M

M

∑
j=1

1
{

ϕ
(
X̃ j | TN

)
̸= Ỹ j

}
,

where ϕ
(
X̃ j | TN

)
is the estimated value of the label

based on the classification rule ϕ and the training data
TN . Point pattern X̃ j is misclassified if its estimated
label ϕ

(
X̃ j | TN

)
does not correspond to its true label

Ỹ j. The misclassification rate thus gives the ratio of
the number of misclassified patterns from the testing
set and the size of the testing set itself. For binary
classification, γ

(
ϕ | TN ,ΓM

)
= 0.5 corresponds to

the situation where the labels are assigned randomly,
regardless of the value of the new observation.

Quality of performance Different classification
scenarios are compared using the average
misclassification rate computed from the set of I ∈ N
replications of the specific simulation experiment.
Scenario with a lower average misclassification rate
is then referred to as preferable. For all the simulation
experiments, we set I at 100.

Computational aspects All simulation
experiments are performed in the statistical software R
(R Core Team , 2017), with packages doParallel
(Wallig et al., 2019), pracma (Borchers, 2019), and
spatstat (Baddeley et al., 2015). The code for
the Hausdorff metric dH is taken from the package
pracma. The pair correlation function is computed
with the default estimator in spatstat. Details about
the estimation of functional summary characteristics
can be found in (Møller and Waagepetersen, 2004).
The unit square [0,1]2 is taken as the observation
window W . The constant R, appearing in the formulas
for dint and dsup, is set to 0.25. When implementing
the kernel regression classifiers, we use the code
accompanying the book (Ferraty and Vieu, 2006).
We have made some minor modifications to adapt
the original code to the context of replicated point
patterns. The automatic procedure for the choice of
the smoothing parameter h is based on leave-one-out
cross-validation. In the simulation experiments, we use
a small number of patterns in the training set (which
is often the case in practical applications). In this
setting, the computation of the dissimilarities (namely,
the estimation of the pair correlation function)
is the computational bottleneck. In contrast, the
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classification, including cross-validation, runs rather
quickly. However, in the case of a large training set, it
can be beneficial to consider j-fold cross-validation to
save some computational time. This approach requires
the specification of the number of folds j.

Further simulation experiments (Sections S4,
S5, S6) and the extension of the ones presented
here (Sections S2, S3, S7, S8) can be found in the
Supplementary material accompanying the paper.
An illustration of the code for our experiments can
be found in a repository on Github at https://
github.com/kpawlasova/Sup_nonparam_
clas_pp.git

EXPERIMENT 1
This simulation experiment provides a basic

overview of the performance of the proposed
classifiers. The pair correlation function g is
considered here, given its simple interpretation and
widespread use in practical applications.

Models We fix the intensity λ = 120
and denote Π(λ ) the stationary Poisson point
process with intensity λ . The stationary Thomas
process is denoted by Φ(κ,µ,σ) and we set
κ = 20 and µ = 6. Parameter σ takes values in
Σ = {0.02,0.03, . . . ,0.20}. To stress the
dependence on the varying value of σ we write
Φ(σ) = Φ(20,6,σ), σ ∈ Σ. For the Gaussian DPP, we
fix θ = 120 and A= {0.0025,0.0050, . . . ,0.0500,αmax}
where αmax = 1/

√
120π

.
= 0.0515. To emphasize the

dependence on α , we write Ψ(α) =Ψ(120,α),α ∈A.
All three models have the same intensity 120. The
observation window is W = [0,1]2 in all cases.

Training and testing data For each σ ∈ Σ, the
training set T(σ) consists of 20 realizations of Φ(σ)
and 20 realizations of Π. The testing set Γ(σ) contains
100 realizations of Φ(σ) and 100 realizations of Π.
The same applies for each α ∈ A for the training set
T(α) and the testing set Γ(α), with Ψ(α) in place of
Φ(σ).

Dissimilarity measure Three different
dissimilarity measures are considered: the Hausdorff
metric dH and two dissimilarity measures based
on the pair correlation function g: dint [g] (shorter
notation for dint(g, ·, ·)) and dsup[g] (shorter notation
for dsup(g, ·, ·)).

Classification scenarios For each σ ∈ Σ, three
different classification scenarios are considered:

ϕH [σ ](·) = ϕNW
(
· | T(σ),dH ,K,hkLCV

)
,

ϕg,int [σ ](·) = ϕNW
(
· | T(σ),dint [g],K,hkLCV

)
,

ϕg,sup[σ ](·) = ϕNW
(
· | T(σ),dsup[g],K,hkLCV

)
,

where the choice of K and hkLCV was described in
the previous section of this paper. Values of average
misclassification rates are reported. For α ∈ A, the
corresponding scenarios ϕH [α], ϕg,int [α] and ϕg,sup[α]
are considered.

Results for Thomas process In the following
comments, values of σ in [0.02,0.1) are considered
small and correspond to strong clustering, values in
[0.1,0.15) are considered moderate, and values in
[0.15,0.2] are considered large and correspond to weak
clustering. The Poisson point process Π can then be
considered a limiting case of Φ(σ) as σ goes to
infinity. The categorization to strong, moderate, and
weak clustering is related to the size and shape of
the observation window. Recall that the theoretical
formula for g is given in (1). For an illustration of how
the values of g depend on the model parameter σ , see
Fig. S2.1 in the Supplementary material.

For small values of σ , which indicates strong
clustering, the average misclassification rate is
expected to be close to 0. On the other hand,
for large values of σ , the realizations from Φ(σ)
are hardly distinguishable from those from Π

(given our observation window), and the average
misclassification rate is expected to be close to 0.5.

The observed average misclassification rates are,
in fact, increasing functions of σ , regardless of the
dissimilarity measure; see Fig. 3 (top left). In terms
of the average misclassification rate, both ϕg,int and
ϕg,sup outperform ϕH , especially for σ < 0.1. The
small difference between the performance of ϕg,int and
ϕg,sup is caused by the high variability of the estimator
of g(r) for very small values of r, which influences
the maximum absolute deviation counterpart of the
dissimilarity measure more than the integral one.

The realizations of the Poisson point process Π

have a very similar structure, which leads to small
variability in the values of d(Xi,X j), where Xi and
X j are realizations of Π, regardless of the dissimilarity
measure in use. On the other hand, for small values
of σ , the realizations of the Thomas process Φ(σ)
show higher variability in terms of point configurations
(clusters of points are placed in arbitrary locations,
leaving gaps between clusters) and hence higher
variability in the dissimilarities measured between two
elements of this group. The dissimilarities between
elements of different groups are smaller for ϕg,int [σ ]
and ϕg,sup[σ ] than for ϕH [σ ]. See Fig. 4 for illustration.
These observations correspond to the fact that most
of the misclassified patterns in this experiment were
realizations of Φ(σ) (Thomas process), erroneously
labeled as realizations of Π (Poisson process) (see
Fig. S2.3 and Fig. S2.2 in the Supplementary material).
The overall performance of ϕg,int [σ ] and ϕg,sup[σ ] is
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Fig. 3. Average misclassification rates γ̄
(
ϕH [σ ]

)
, γ̄

(
ϕg,int [σ ]

)
and γ̄

(
ϕg,sup[σ ]

)
are plotted as functions of

parameter σ (top-left). To illustrate the variability of the individual misclassification rates, the 90% pointwise
envelopes are plotted for each classification scenario.
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Fig. 4. Visualization of dissimilarities in a set of 40 patterns (20 patterns generated from Φ(σ) with σ = 0.05,
indices 1 to 20, denoted by circles, and 20 patterns from Π, indices 21 to 40, denoted by triangles). The plots
correspond to dH (left), dint [g] (middle) and dsup[g] (right). Vertical axis – index of the pattern. Horizontal axis
– the position of the points of the plot on horizontal axis are determined by the multidimensional scaling so that
the distance of a pair of points in the plot is approximately proportional to the dissimilarity between the underlying
pair of point patterns.
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satisfactory, but the average misclassification rate of
ϕH [σ ] is much higher for small values of σ .

For higher values of σ , the realizations of Φ(σ)
resemble those of Π, and the dissimilarities between
the realizations from different groups become smaller.
This implies a higher number of misclassified patterns
from both groups and higher average misclassification
rates for all classifiers considered in this experiment.

Note that the pair correlation function itself is
estimated with the help of a kernel-based estimator.
Therefore, it requires the user to choose a smoothing
parameter. The quality of the estimates is highly
dependent on the choice of this smoothing parameter.
Fig. 5 illustrates the impact of this choice on the
performance of the classifier based on dint [g] and
dsup[g], respectively. We study three choices of the
smoothing parameter: the default value from the
spatstat package, 0.5× the default, and 1.5× the
default. Our simulations show that the appropriate
choice of the smoothing parameter (in this case, higher
than the default) can slightly improve the results.
On the contrary, a wrong choice (too small value)
can severely disrupt the classification. Hence, we
recommend keeping the default value to reduce the risk
of choosing a too small value.

Results for Gaussian determinantal process In
this case, the values of α in [0.0025,0.002) are
considered small and correspond to weak repulsion,
the values in [0.002,0.004) are considered moderate
and the values in [0.04,αmax] are considered large
and correspond to strong repulsion. With the value of
α approaching 0, the repulsive interactions become
weaker, and Π can be considered a limiting case
of Ψ(α) for α → 0. Recall that the theoretical
formula for g is given in (2), illustration of the
dependence of g on α can be found in Fig. S2.4 in
the Supplementary material. For small values of α , the
average misclassification rate is expected to be close to
0.5. Then, it is expected to decrease with α increasing.

Fig. 6 shows that γ̄
(
ϕH [α]

)
is between 0.4 and

0.5 for all α ∈ A, meaning that the realizations
from Ψ(α) and Π are practically indistinguishable
using the Hausdorff metric, regardless of the value
of α . Scenarios ϕg,int [α] and ϕq,sup[α] produce
similar average misclassification rates, which are very
satisfactory for high values of α .

The repulsive interactions in Ψ(α) imply that
the realizations have a very similar structure, with
smaller dissimilarities between two realizations from
the same model than in the case of two realizations
of Π. Similar considerations about the number of
misclassified patterns in each group that we have
made in the previous paragraphs also apply to

the classification Ψ(α) vs Π. However, note that
now Π has more variable configurations and larger
dissimilarities between two realizations from the same
model, see Fig. 7. More details can be found in
Fig. S2.5 and Fig. S2.6 in the Supplementary material.

Summary In both situations, Φ(σ) vs Π and
Ψ(α) vs Π, the classifiers ϕg,int and ϕg,sup outperform
ϕH for all values of the model parameter. If the model
parameters are set such that the observation window
W does not provide enough information to distinguish
between the realizations of the two models (high value
of σ or small value of α), the average misclassification
rate is close to 0.5 for all classifiers. However, even
in these cases, it is beneficial to choose ϕg,int or
ϕg,sup over ϕH . We conclude that the choice of the
dissimilarity measure greatly affects the performance
of the classifiers. Further computations (Sect. S3 in
the Supplementary material) favour the use of the
second-order summary characteristics such as g or L
when constructing the dissimilarity measure.

Given this basic framework (binary classification,
simple models), ϕNW together with dint [g] or dsup[g]
provides satisfactory results. However, the appropriate
choice of the summary characteristic is not obvious.
Prior expert knowledge of the problem at hand should
always be taken into account.

EXPERIMENT 2
This simulation experiment extends Experiment 1

from the previous section. It compares the performance
of the classifiers studied in Experiment 1 with the
classifier introduced in (Mateu et al., 2015). Models,
training and testing data are precisely the same as in
Experiment 1.

Classification scenarios For each σ ∈ Σ, we
consider the three classification scenarios ϕH [σ ],
ϕg,int [σ ] and ϕg,sup[σ ] introduced in Experiment 1.
The performance of these classifiers will be compared
with ϕ⋆

H [σ ], ϕ⋆
g,int [σ ] and ϕ⋆

g,sup[σ ] introduced in
(Mateu et al., 2015). In detail, ϕ⋆

H [σ ] uses the
dissimilarities based on the Hausdorff metric and
multidimensional scaling (MDS) to represent the
realizations of Π and Φ(σ) as points in R2. Then,
Fisher’s linear discriminant analysis (LDA) is used
to solve the substitutive classification task in R2.
Analogously, ϕ⋆

g,int [σ ] and ϕ⋆
g,sup[σ ] use dint [g] and

dsup[g], respectively, to calculate the dissimilarities
that enter multidimensional scaling. Multidimensional
scaling is performed using the function smacofSym
from the R package smacof. The function lda
from the R package MASS is then used to perform
the classification. We report the values of the
average misclassification rates, as in Experiment 1.
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Fig. 5. Average misclassification rates for different choices of the smoothing parameter used while estimating the
pair correlation function. The solid line corresponds to the default setting in spatstat package (this values are
the same as in Fig. 3), the dotted line corresponds to the value 0.5× the default and the dashed line corresponds
to the value 1.5× the default.
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Fig. 8. Average misclassification rates corresponding to ϕ⋆
H [σ ], ϕ⋆

g,int [σ ] and ϕ⋆
g,sup[σ ] are plotted as functions

of the model parameter σ . For each d ∈ {dH ,dint [g],dsup[g]}, the average misclassification rates corresponding
to ϕ⋆

d (including the 90% pointwise envelope based on the individual misclassification rates) are compared to
average misclassification rates corresponding to ϕd (from Experiment 1).
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Fig. 9. Average misclassification rates corresponding to ϕ⋆
H [α], ϕ⋆

g,int [α] and ϕ⋆
g,sup[α] are plotted as functions of

the model parameter al pha. For each d ∈ {dH ,dint [g],dsup[g]}, the average misclassification rates corresponding
to ϕ⋆

d (including the 90% pointwise envelope based on the individual misclassification rates) are compared to
average misclassification rates corresponding to ϕd (from Experiment 1).

For α ∈ A, the corresponding scenarios ϕH [α],
ϕg,int [α], ϕg,sup[α], ϕ⋆

H [α], ϕ⋆
g,int [α] and ϕ⋆

g,sup[α] are
considered.

Results for Thomas process Fig. 8 shows that
ϕ⋆

H [σ ] is clearly outperformed by the two classification
rules ϕ⋆

g,int [σ ] and ϕ⋆
g,sup[σ ]. For small values of

σ , ϕ⋆
g,sup[σ ] gives the lowest values (among the

three classifiers based on multidimensional scaling
and linear discriminant analysis) of the average
misclassification rate. On the other hand, for σ > 0.1,
ϕ⋆

g,int [σ ] has the best performance. When comparing
the “MDS + LDA” classifiers with those based
on kernel regression, we see that ϕ⋆

H [σ ] produces
a lower average misclassification rate than ϕH [σ ]
with the greatest difference between the average
misclassification rates observed for σ between 0.05
and 0.1. The classification rule ϕg,int [σ ] outperforms
ϕ⋆

g,int [σ ] for small values of σ , for σ > 0.1 the choice
of the “MDS + LDA” classifier leads to a slightly
lower average misclassification rate. The differences in
the performance of ϕg,sup[σ ] and ϕ⋆

g,sup[σ ] are almost
negligible, with a small favor towards the use of
ϕg,sup[σ ].

Results for Gaussian determinantal process For
classification Π vs Ψ(α), the situation with the three
classifiers based on MDS and LDA is very similar to
the results reported in Experiment 1. For α > 0.02,
ϕ⋆

g,sup[α] gives slightly lower average misclassification
rates than ϕ⋆

g,int [α], but both clearly outperform ϕ⋆
H [α].

The difference between the “MDS + LDA” classifiers
and those based on kernel regression is negligible,
except for the dissimilarity measure dint [g], where
the kernel regression classifier gives lower average
misclassification rates while α > 0.03.

Summary This experiment shows that the
classifiers ϕg,int ,ϕg,sup performs (in the straightforward
situation presented in Experiment 1) at least as well as
the “MDS + LDA” classifiers proposed in (Mateu et
al., 2015). Furthermore, for small values of σ and
large values of α (i.e. situations where we expect
low misclassification rates), the results favour the
classifiers that use the kernel regression method. The
only situation where the classification rules from
(Mateu et al., 2015) show better performance is in
combination with the Hausdorff metric. However,
classifiers based on the Hausdorff metric exhibit
significantly higher average misclassification rates
than those based on dint [g] or dsup[g]. Note that in the
following experiment, the Hausdorff metric dH will
not be considered due to its inferior performance in
experiments 1 and 2.

EXPERIMENT 3

This experiment studies the proposed method
provided that the two models at hand belong to
the same parametric family and differ in the value
of the model parameter.
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Models, training and testing data Let σ1 ∈
{0.05,0.1,0.15} and σ2 ∈ Σ. We consider the
classification Φ(σ1) vs Φ(σ2). Similarly, let
α1 ∈ {0.02,0.03,αmax}, α2 ∈ A, and consider
the classification Ψ(α1) vs Ψ(α2). For each
combination of σ1 and σ2, the training sets
T(σ1,σ2,20,20) are composed of 20 realizations of
Φ(σ1) and 20 realizations of Φ(σ2). The testing
sets Γ(σ1,σ2,100,100) are then composed of 100
+ 100 realizations from the given models. Training
and testing sets T(α1,α2,20,20), Γ(α1,α2,100,100)
(for each combination of α1 and α2) are defined
correspondingly.

Dissimilarity measures and classification
scenarios Following the notation in Experiment 1,
the dissimilarity measure dint [g] is considered. For
σ1 ∈ {0.05,0.1,0.15} and σ2 ∈ Σ, we denote by
ϕg,int [σ1,σ2] the classification rule

ϕNW
(
· | T(σ1,σ2,20,20),dint [g],K,hkLCV

)
,

where K and hkLCV are as in Experiment 1. For
α1 ∈ {0.02,0.03,αmax} and α2 ∈A, the corresponding
scenarios ϕg,int [α1,α2] and ϕg,sup[α1,α2] are
considered. The performance of a classification
scenario will be referred to as satisfactory if the
corresponding average misclassification rate is ≤ 0.1.

Results for Thomas process For each value of
σ1, we expect the average misclassification rate
to be 0.5 for σ2 = σ1 and to decrease with
increasing distance |σ1 − σ2|. Fig. 10 shows that
the average misclassification rate corresponding to
ϕg,int [σ1,σ2],σ1 = 0.05, is below 0.1 expect for the
few values of σ2 that are the closest neighbors
of σ1 = 0.05. This is a consequence of the
behaviour of the (theoretical) pair correlation function
in the model with such strong clustering. The values
of the pair correlation function change significantly
with even small changes of σ . In addition, the 90%
pointwise envelope is very narrow and the changes in
its width with respect to σ2 are negligible. For σ1 = 0.1
and σ1 = 0.15, the average misclassification rate is
close to 0 for very small values of σ2 but increases
significantly towards 0.5 for σ2 = σ1 and decreases
afterwards. The value of the average misclassification
rate is below 0.1 for σ2 ∈ [0.02,0.05] in the first
case and σ2 ∈ [0.02,0.7] in the second case. The 90%
pointwise envelopes are narrow for the smallest values
of σ2, and their width increases as σ2 is growing
towards 0.2. Loosely speaking, the realizations of
Φ(σ) with the value of σ corresponding to mild or
weak clustering can be distinguished successfully from
the realizations of Φ(σ) with σ sufficiently small
(representing strong clustering). Similar observations
can be made for the maxima absolute deviation

counterpart dsup[g] of the dissimilarity measure (see
Fig. S7.14 and Fig. S7.15 in the Supplementary
material).

Results for Gaussian determinantal process We
again expect the average misclassification rate to be
0.5 for α2 = α1, and to decrease with |α1 − α2|
increasing. For α1 = 0.02, Fig. 11 shows that the
average misclassification rate corresponding to ϕg,int
starts at 0.2, then increases to 0.5 and then decreases
as α2 grows towards its maximal values. For α2 >
0.04, the average misclassification rate is below 0.1
Similarly, for α1 = 0.03 the average misclassification
rate is below 0.1 for the two smallest values of
α2 as well as for the two largest values. For α1 =
αmax, the situation is different. In this case, we
start with a nearly perfect classification, the average
misclassification rate stays below 0.1 for α2 ≤ 0.03,
then increases sharply towards 0.5. This is consistent
with the fact that αmax represents the most repulsive
model whereas α < 0.02 represents weak repulsion.
The difference in performance for the classifier based
on the maximum absolute deviation counterpart dsup[g]
of the dissimilarity measure is negligible.

Summary For binary classification Φ(σ1)
vs Φ(σ2) or Ψ(α1) vs Ψ(α2), the average
misclassification rates corresponding to ϕg,int decrease
with increasing distance |σ1 − σ2| or |α1 − α2|.
Classification between models with strong interactions
and weak interactions is very successful, but for
models with similar properties (similar values of
model parameters), the average misclassification rates
are high. Recall that all of the realizations in this
experiment are observed on the unit square. Sect. S8 in
the Supplementary material presents a repetition of this
experiment with a larger observation window, studying
the impact of the increasing number of points per
realization on the performance of the kernel regression
classifier.

REAL-DATA EXAMPLE

To illustrate the proposed methodology, we apply
our classification procedure to a collection of 68 point
patterns representing the centers of intramembranous
particles located in the mitochondrial membranes of
the HeLa cell line. These data were collected using the
freeze-fracture technique (Schladitz et al., 2003).

During data collection, the cell line was
observed in three different environments to study
mitochondrial metabolism: under normal conditions,
after exposure to sodium acid, and after exposition
to rotenone. Therefore, we distinguish three groups
of patterns: a control group corresponding to standard
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Fig. 10. The average misclassification rates γ̄
(
ϕg,int [σ1,σ2]

)
, σ1 ∈ {0.05,0.1,0.15}, are plotted as functions of

the model parameter σ2. The variability of the sequences of the individual misclassification rates are illustrated
with the 90% pointwise envelopes.

Fig. 11. The average misclassification rates γ̄
(
ϕg,int [α1,α2]

)
, α1 ∈ {0.02,0.03,αmax}, are plotted as functions

of the model parameter α2. The variability of the sequences of the individual misclassification rates are illustrated
with the 90% pointwise envelopes.
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conditions (33 patterns), the first group corresponding
to the sodium acid environment (14 patterns), and
the second group corresponding to the rotenone
environment (21 patterns). One (randomly chosen)
pattern from each group is plotted in Fig. 1.

For all the observed patterns, we fix a squared
observation window with an edge length of 336 nm.
According to the analysis in (Schladitz et al., 2003),
observations in all three groups exhibit a hard-core
property for very small distances. It means that pairs
of points that are very close to each other do not occur
in the patterns – the intramembranous particles, whose
centers are recorded, do not overlap. Weak repulsion
between points of the process occurs on the scale from
10 nm to 20 nm. Weak aggregation can be observed
for interpoint distances greater than 20 nm.

We perform ternary classification using the
Bayes classifier in combination with the k-nearest
neighbors algorithm and the kernel regression
method (including the local choice of the optimal
k). After some preliminary observations, we
have decided to use g, L and G to build the
dissimilarity measures. While L is derived from
the pair correlation function, the characteristic G
is based on interpoint distances; see (Møller and
Waagepetersen, 2004) for further details. We set
R(g) = R(L) = 84 nm, that is, 1/4 of the edge length
of the observation window, and R(G) = 66 nm. The
classification is performed as follows: we fix one of
the 68 patterns, consider the remaining 67 patterns as
training data, and predict the label of the fixed pattern.
We then compare the predicted labels to the true ones
to compute the misclassification rate, see Table 1.
Furthermore, we report the number of misclassified
patterns in each group.

Table 1 shows that the use of G leads to the
lowest misclassification rate (for both versions of
the dissimilarity measure). However, more than one-
quarter of the patterns are misclassified, even in
the best scenario. Note that from the sodium acid
group, 9 resp. 8 patterns are not classified correctly.
This group contains the smallest number of patterns
(14). For g and L, the misclassification rates based
on dsup are the same. With dsup[L], 60% of the
patterns in the rotenone group are misclassified. With
dsup[g], the sodium acid group is the most problematic.
The highest misclassification rate is observed for
dint [L], with almost all patterns in the noncontrol
groups labelled wrongly. For dint [g], one-third of
the patterns in the control group (the largest group,
containing 33 patterns) are misclassified. Visualisation
of the dissimilarities between the elements of this
dataset can be seen in Fig. S9.20 and Fig. S9.21 in the
Supplementary material.

In conclusion, none of the three summary
characteristics considered in this section provides a
satisfactory ternary classification. Suppose that we
select the control and sodium acid groups and consider
binary classification. In that case, we expect good
performance from the classifier based on dsup[L], see
the number of misclassified patterns from individual
groups in Table 1. Similarly, we expect that the
classifier based on dint [G] will provide satisfactory
results for binary classification between the control
and rotenone groups. The same applies to the rotenone
and sodium acid groups. To improve the ternary
classification, we need to tune up the classifiers, e.g.
by identifying another summary characteristic, better
capturing the differences between the three groups.

DISCUSSION

This paper proposes a methodology for the
supervised classification of point patterns based on
their representation by a selected functional summary
characteristic. The presented simulation experiments
confirm that the Bayes classifier in combination
with the k-nearest neighbors algorithms and the
kernel regression method is successful in solving the
problem.

The simulation experiments cover the three main
classes of models: aggregation, complete spatial
randomness, and repulsion. The particular models
considered in this paper represent the typical behavior
in their respective classes and are often used in
practice, thus providing a good picture of the problem.
Of course, other models could also be considered.

The simulation study focuses mainly on
the pair correlation function, selected for its
simple interpretation and popularity in the applied
literature. However, many other functional summary
characteristics are available, and to make an
appropriate choice, one should use the expert
knowledge of the problem at hand.

In a specific application, choosing an appropriate
version of the classifier with all tuning constants is
a difficult task. For that reason, seeking generally
applicable recommendations is useless. Our decisions
should be guided by expert knowledge about the
particular dataset. When several candidate (versions
of) classifiers are assumed to be relevant, we suggest
investigating their performance in the training dataset
using an appropriate cross-validation scheme.

Finally, we remark that the proposed method can
be directly extended to more complicated settings,
such as random sets, provided that relevant summary
characteristics are available.
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Table 1. Ternary classification problem: the Bayes classifier in combination with the k-nearest neighbors
algorithm and the kernel regression method is applied to the point pattern data from (Schladitz et al., 2003).
The misclassification rate is reported, as well as the number of misclassified patterns in each group. The left-
hand side of every column corresponds to the integral version of the dissimilarity measure, and the right-hand
side corresponds to its maximum absolute deviation counterpart.

Avg. m. rate Control Sodium acid Rotenone
g 0.324 0.353 11 8 5 9 6 7
L 0.500 0.353 6 7 12 4 16 13
G 0.294 0.265 6 6 9 8 5 4
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