
Image Anal Stereol 2022;41:171-180 doi: 10.5566/ias.2640
Original Research Paper

APPLYING DEEP LEARNING TO MELANOCYTE COUNTING ON
FLUORESCENT TRP1 LABELLED IMAGES OF IN VITRO SKIN MODEL

TRISTAN LAZARD� ,1, SAMY BLUSSEAU1, SANTIAGO VELASCO-FORERO1, ÉTIENNE
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France, 2L’Oréal Research and Innovation, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France
e-mail: tristan.lazard@minesparis.psl.eu, samy.blusseau@minesparis.psl.eu,
santiago.velasco@minesparis.psl.eu, etienne.decenciere@minesparis.psl.eu, catherine.cohen@rd.loreal.com,
virginie.flouret@rd.loreal.com, therese.baldeweck@rd.lorcountingeal.com
(Received November 9, 2021; revised September 9, 2022; accepted October 26, 2022)

ABSTRACT

Cell counting is an important step in many biological experiments. It can be challenging, due to the large
variability in contrast and shape of the cells, especially when their density is so high that the cells are closely
packed together. Automation is needed to increase the speed and quality of the detection. In this study, a
cell counting method is developed for images of melanocytes obtained after fluorescent labelling with TRP1
(Tyrosinase-related protein 1) of 3D reconstructed skin samples. Following previous approaches, a strategy
based on predicting the local cell density, by means of a convolutional neural network (a U-Net), was adopted.
The method showed great efficiency on a test set of 76 images, with an assessed counting error close to 10%
on average, which is a commonly accepted target in cytology and histology. For comparison purposes, we
have made our dataset publicly available.

Keywords: cell counting, convolutional neural networks (CNN), deep learning, fluorescence microscopy,
histology, immunohistochemistry (IHC), reconstructed skin.

INTRODUCTION

In order to investigate human skin responses
to molecules of interest, in vitro biological models
are needed to mimic human skin behavior. An in
vitro 3D pigmented reconstructed skin, containing
keratinocytes, fibroblasts and melanocytes, has been
developed to study pigmentation mechanisms (Duval
et al., 2014). It offers the possibility to select,
manage and treat cells in order to create customized
experimental setups.

Cutaneous pigmentation is currently assessed
by measuring melanin content on Fontana Masson
histological color images and by quantifying
melanocyte population on fluorescent images labelled
for Tyrosinase-related protein 1 (TRP1), a melanocytic
marker. These quantifications are usually done in a
semi-automatic way, which is time consuming and
prone to user induced variability. Here, we aim at
developing an automatic cell counting method for
TRP1 images. Variability appears between different
production batches of skin models leading to various
melanocyte shapes, densities and dendrites as shown
on Fig. 1. Therefore the proposed method has been
designed to encompass a wide range of image
variability.

The contributions of this paper are: 1. The
adaptation of an existing cell counting solution based
on deep learning and local density estimation; 2. a
specific metric adapted to counting approaches in large
field images; 3. A new challenging data set for cell
counting.

RELATED WORK

Counting cells automatically in microscopy
images is a challenge (Schmitz et al., 2014) that
has motivated the development of many specific
methods in the computer vision community. The
first approaches involved image processing methods
based on color and texture descriptors combined with
morphology filtering (Berge et al., 2011; Chadha et al.,
2020). However, over the last decade, the state of
the art has been achieved by deep learning based
approaches, and more precisely by Convolutional
Neural Networks (CNNs) (Khan et al., 2016; Cohen
et al., 2017; Xie et al., 2018a; Falk et al., 2019;
Han et al., 2019; Xie et al., 2018b; Paulauskaite-
Taraseviciene et al., 2019; Liu et al., 2019; Sierra
et al., 2020; Zheng et al., 2020; He et al., 2021).
In object counting, it is common to distinguish
between detection-based methods (Arteta et al.,
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2016; Laradji et al., 2018; Xie et al., 2018b; Falk
et al., 2019), which are designed to precisely locate
objects before counting them, and regression-based
methods (Cohen et al., 2017; Xie et al., 2018a;
He et al., 2021), which directly output a number
of cells without necessarily detecting their precise
locations. Since accurately locating objects is harder
than counting them, especially when they are partially
occluded or overlapping, regression-based methods
seem preferable when only a density estimation is
required. As a matter of fact, they show the best results
in cell counting (Cohen et al., 2017; Xie et al., 2018a;
He et al., 2021). The most successful ones consist
in learning a mapping between input images and
density maps, as originally proposed by Lempitsky and
Zisserman (2010). The number of objects of interest is
then recovered by integrating these density maps.

The seminal work1 of Xie et al. (2018a), proposed
to do so with a fully convolutional neural network,
laying the basis of a new shift in the field of
cell counting. The success of this approach lies
in three key advantages. First, it benefits from the
flexibility of regression-based methods in the handling
of overlapping cells. Second, density maps can be
easily interpreted as they provide a rough location of
cells, contrary to other regression methods like (Cohen
et al., 2017). This is critical for real life users who
need to check the soundness of the algorithm on
their data. Third, the method comes with all the
strengths of CNNs, namely great accuracy, automatic
learning of features and the possibility to run the
network on any size of image, including very large
ones, avoiding the need to cut images into patches
which often entails border effects. Regarding the very
counting performance, progress were made since the
study of Xie et al. (2018a), but at the cost of lower
explainability (Cohen et al., 2017) or a much more
complex setting (He et al., 2021) for a marginal
improvement. In the literature these methods are
usually applied to benchmark datasets where cells are
mostly convex.

In the present study, we propose a successful
application of the paradigm initiated by Xie et al. We
customize this method using recent progress in deep
learning but keeping it simple, easily interpretable for
users, and apply it to data coming from a real life lab
routine, previously untested and showing non convex
cells with very high variability.

DATASET

In order to identify in vitro molecules impacting
the pigmentary function of the skin, a 3D
model of pigmented reconstructed skin has been
developed (Duval et al., 2014). It comprises an
epithelium made of keratinocytes, harboring at its
basal layer the melanocyte population which is
responsible for the pigments generation. The epidermis
is built on a dermal equivalent containing the fibroblast
population embedded in a contracted collagen gel.
The model offers the possibility to select, combine and
treat different cell populations in order to build specific
experimental setups to study pigmentation.

Different in vitro pigmented reconstructed skin
samples were produced and sliced in quarters for
different analysis purposes (radius: 10mm). One
quarter was submitted to TRP1 fluorescent labeling
according to Duval et al. (2014), see Fig. 2. As can
be seen in the the zoomed image, only the fluorescent
melanocytes are visible. They appear as dendritic cells
in unlabeled keratinocyte epithelium (not visible).

Histological images were acquired with a
Nanozoomer Hamamatsu microscope producing large
field images (≈ 13mm×13mm, 30000×30000 pixels)
with high resolution (0.4523 × 0.4523µm2/pixel).
Three channels RGB images were saved, but only the
green channel was used since the fluorescent signal
was recorded in this channel. From each large field
image, an area of 1024×1024 pixels was extracted in
a region near the center of the sample (center of the
disk) to avoid the edge effects of the biological tissue.

In order to take into account different experimental
conditions, we selected images from studies performed
between 2011 and 2017. Within each study, various
experimental conditions were realized in triplicates (3
samples per condition). To establish the data set for this
work, we made the decision to retain from each study
only one sample per experimental condition.

Our dataset is composed of two sets of 76 colour
images each, one for training and the other for testing.
Each image is 1024 × 1024 pixels large and at the
resolution mentioned above (see Fig. 1). Each image
was analyzed by experts who marked the coordinates
of each cell, providing a ground truth in location as
well as a number of cells per image, as shown in
Fig. 1. The first set of 76 images, that we named Set
1, was used for training, whereas Set 2, composed of
the remaining 76 images, was kept as a test set. Both
sets are available online2.

1Although the paper was published in a journal issue of 2018, it was first published online in 2016.
2Our dataset is available at the following link: https://cloud.minesparis.psl.eu/index.php/s/c50xFQFENFZ6I5h
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Fig. 1. Top row: Four examples of 1024 × 1024 images cropped from high resolution skin samples
(Resolution: 0.4523×0.4523µm2/pixel). They illustrate the high variability of the data to analyse. Bottom row:
Corresponding coordinates of manually annotated cells (in red on grayscale images for better visibility).

Fig. 2. Example of a quarter skin sample labelled by the TRP1 (Tyrosinase-related protein 1) and zoom on a
detail where melanocytes are visible.
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Fig. 3. Illustration of the proposed method: input images are mapped by a Fully Convolutional Neural Network
to density maps containing the density information.

METHODS

Inspired by successful examples of object counting
in the deep learning literature (Xie et al., 2018a; He
et al., 2021), we propose to train a deep and Fully
Convolutional Neural Network (FCNN) to map input
cell images to density maps, as shown in Fig. 4. More
precisely, we used a U-net architecture (Ronneberger
et al., 2015), the details of which are provided below.
The link between counting and density maps is that the
sum of a density map pixel values equals the number
of objects to count. This approach has the advantage
to provide an interpretable object, the density map, to
support the count inference, hence allowing us and the
future users of the algorithm to control its soundness.
Moreover, inferring a density map allows a more
compliant behaviour as it is able to infer intermediate
densities in case of uncertainty, for example when two
cells overlap or if one has a peculiar shape.

INPUT IMAGES AND ANNOTATIONS

Since almost all the visual information is contained
in the green channel of our images, we chose to use
the latter as input of the network to avoid unnecessary
complexity. Note that tests were also run using all
three channels in case information coming from the
blue and red channels might help, but this brought

no improvement and even impaired performance. The
spatial resolution was also reduced by four, as images
were downscaled from 1024 × 1024 to 256 × 256
pixels (Fig. 4a). The reason for this choice was to
increase the batch size during training (see Section 4.3)
and, again, tests with full resolution images and
smaller batches showed lower performances.

The ground-truth density images, representing the
output expected from the network, were built from the
manual annotation of the cells coordinates (Fig. 4b),
as follows. A 2D isotropic Gaussian function with
covariance matrix σ2I2 was normalized (to have
integral 1) and translated at each cell location, before
all these translated Gaussian functions were summed
up. Then the resulting image was multiplied by 100.
In that way, the integral of the resulting image (see
Fig. 4c) was set to be 100C, where C is the true
number of cells contained in the corresponding input
image. This factor 100 was used to ensure the density
images were not too ”flat”, i.e. that their maxima
were not too small. Indeed, we observed that this
numerical trick helped the training process to converge
(see Section 4.3). The parameter σ , which rules the
width of the Gaussian blobs, was also to be set. It is
not obvious to choose its optimal value for the method
a priori, although one can assume it should roughly
match the typical dimension of cells in the images.
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(a) (b) (c)

Fig. 4. An example of input and associated density map used to train the FCNN. (a) Green channel, 256× 256
pixels. (b) Cells coordinates marked manually. (c) Corresponding target density map.

After trying several values on the training set, we
finally opted for σ = 6 pixels for the downscaled 256×
256 pixels images, which corresponds approximately
to 10µm. Fig. 4 shows an example of density image
built this way.

ARCHITECTURE
The FCNN we designed for the image-to-density-

map task is a U-net (Ronneberger et al., 2015) with
the following custom features, that are illustrated
by Fig. 5. The first layer counts 32 filters and the
network includes three downsampling steps followed
by the corresponding three upsampling steps. In
the contraction path of the network, the double
convolutions followed by a max-pooling are replaced
by a 3 × 3 convolution with stride 1 followed by
a 3 × 3 convolution with stride 2. In the expansion
path, the upsampling is achieved by a bilinear
interpolation followed by a 3 × 3 convolution. The
activation function following each convolution is a
leaky ReLU defined by fα(x) = 1R−(x)αx+1R+(x)x,
with α = 0.2. Besides, a batch normalization is
applied on each output of the leaky ReLU. Regarding
the depth of the U-net (the number of downsampling
steps in the contracting path), the choice of setting it
to three was not arbitrary. Experiments were carried
out to assess the effect of depth on accuracy. They
showed that the performance increased with depth up
to three, but no significant improvement was observed
for a depth of four.

TRAINING PROTOCOL
Training data. To train the U-net presented

earlier, we used the first set of 76 images. This set was
split into a training set of 60 images, and a validation
set of 16 images. As usual, the parameters of the
network were updated based on the evaluation of the

loss function on the training set, whereas the evaluation
on the validation set helped monitor the generalization
ability of the network.

Data augmentation. It is reasonable to assume
that the organisation of melanocytes in a skin sample
is isotropic in the focal plane. This means that for any
image like one of Fig. 1, its rotated and flipped versions
still look like realistic data. Furthermore, we observed
in the data that some cells appear blurry when they
are slightly out of the focal plane of the microscope.
Both observations allow us to artificially produce new
images from the available ones. Convolutional neural
networks are translation invariant but, in general, not
invariant to rotations or mirror symmetries. This means
that an image and its rotated or mirrored versions are
seen as different by the network. Hence, adding to
the dataset rotated, mirrored or blurred versions of the
initial images allows to train the network with more
data than initially available and may therefore increase
the performances of the algorithm. We implemented
this data augmentation by uniformly sampling over the
set of combined transformations mentioned above. The
blurring was done through a Gaussian convolution, the
scale of the Gaussian kernel being uniformly sampled
in [0.5, 2.5].

Loss function. The training phase consisted in
minimizing the L1 distance between each image ŷ
output by the network and the corresponding expected
density map y, that is

ℓ(y, ŷ) =
N

∑
i=1

|yi − ŷi|, (1)

where yi and ŷi denote the values at pixel i of both
images respectively, and N = 2562 is the number of
pixels in each image. Note that our actual target is
that the estimated number of cells ĉ be as close as
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Fig. 5. The U-net architecture we used.

possible to the real number c, but since c = ∑
N
i=1 yi

and ĉ = ∑
N
i=1 ŷi, we get by triangular inequality that

|c− ĉ| ≤ ℓ(y, ŷ). Therefore, it is sufficient to minimize
ℓ(y, ŷ) for our purpose and, as said earlier, we get
more by doing so: indeed, density maps can represent
uncertainty and they are interpretable.

Optimization. The minimization of the loss
function with respect to the parameters of the network
is based on the principle of stochastic gradient descent.
More precisely, we used the Adam optimizer (Kingma
and Ba, 2015) with a learning rate η = 2 · 10−4 and
PyTorch default momentum parameters β1 = 0.9 and
β2 = 0.999. The update of the network parameters
was done after each evaluation on batches of 16
images, based on the average loss over the batch. The
optimization process was carried on until no (or too
little) improvement was observed on the validation loss
for 2500 epochs.

EVALUATION METRICS

Average relative error. As a quality measure, we
compute the relative counting error achieved by the
algorithm. A natural way to do so is to take the ratio
of the absolute difference between estimated and true
number over the same true number of cells, taken as
reference. Mathematically, this writes |c− ĉ|/c, where
c and ĉ denote respectively the true and the estimated
number of cells in an image. To assess the global
performance of the algorithm, we could compute this
ratio for each test image and take the average over
images. For a test set composed of NS images, this
average relative error writes

Aerr(S) =
1

NS

NS

∑
i=1

|ci − ĉi|
ci

, (2)

where ci and ĉi are the true and estimated numbers of
cells for image i.

Although intuitive and often used (He et al.,
2021), this measure is questionable. First it completely
ignores the different numbers of cells to be found in
different images. Suppose for example a set of two
images, one with 100 cells and the other one with
only one cell, and that the algorithm estimates 90
cells in the first image and does not see any in the
second. In that case Aerr(S) = 55%, which seems very
unfair, especially considering that the images come
from much larger samples and that the split into sub-
images is rather arbitrary. Second, the relative error for
an image is not defined as soon as ci = 0, which does
occur. In this case, we may count this as a relative
error of 100% if the algorithm counted at least one
cell in this image, and zero otherwise, which is again
questionable as it does not distinguish between over-
counting by one, two or more cells. Finally, it does not
evaluate over- and under-estimations the same way:
counting one cell when there were two yields a ratio
of 50%, whereas counting two when there was only
one yields a relative error of 100% (and likewise errors
even larger than 100% can occur).

Total relative error. For all these reasons, we
propose an alternative quality measure that we call
total relative error. It consists in summing all the errors
made over all images and taking the ratio over the total
number of cells to be counted in the set of images. This
is close to pretending that the images of the test set
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come from one large skin sample, and that the target
number is the total number of cells in this sample
- except that in this measure the absolute errors are
summed and therefore over- and under-estimations can
never compensate, contrary to what would happen in
a large skin sample. This new quality measure now
writes:

Terr(S) =
∑

NS
i=1 |ci − ĉi|
∑

NS
i=1 ci

. (3)

Although we believe this measure makes more sense
than the average one (eq. 2), we report both in the
Results section to avoid any choice that could seem
biased.

RESULTS

In Fig. 6, we show the output density maps and
associated counted number of cells for four different
input images, coming from the test set. Qualitatively,
these examples already show the soundness of the deep
learning algorithm, even in very difficult cases. Indeed,
the output density maps seem always very correlated to
the expected ones, and the gap between estimated and
true number of cells is always within what we could
expect at a given difficulty level.

The quantitative results of the approach are
reported in Table 1. As we can see, there is a significant
overfitting to the training set. However, this did not
impair the performance on the validation set (the
training would have been stopped earlier otherwise),
and the errors on both validation and test sets are
still under or about 10%, which was considered
as satisfactory by the final users. Note also that it
is consistent with the best reported results in cell
counting on different benchmark datasets: between 8%
and 15% in He et al. (2021).

Table 1. Summary of the average and total relative
errors in cells counting on the different image sets, for
the deep learning approach.

Training Validation Test
Aerr (%) 0.3 8.36 9.28
Terr (%) 0.4 10.4 8.72

Furthermore, these errors are an overestimation of
the overall error that would be made on a large skin
sample, where local over and under detections can
compensate.

Finally, we show how the method can be simply
embedded and applied in a lab routine for melanocyte
density estimation. Indeed, the algorithm can be
applied directly to large images (to a whole skin
sample in theory, up to RAM limitations). Fig. 7 is

an example of large image (30000 × 26624 pixels)
split into four sub-images for memory reasons. The
cells could be counted just like in small images, as
the resolution is the same, and the density of cells
could be estimated locally as well as globally. The
estimated number of cells of the whole quarter sample
is about 16,700, and the density about 245 cells.mm−2,
with a maximum of 440 cells.mm−2 for the lower
left hand corner and a minimum of 40 cells.mm−2

for the top right hand corner (note that a mask of
the quarter sample was computed beforehand so the
densities exclude dark background area surrounding
the sample). These computations took four minutes,
including loading images and writing outputs, with an
Intel Xeon CPU E5-2640 v3, 2.60GHz processor base
frequency (and without GPU).

DISCUSSION

The method presented here shows a great setup
simplicity, as it requires a relatively small annotated
set, and implementation and training of the U-Net
architecture are straightforward. At the same time,
the obtained performance on our dataset matches
both the users’ expectations and the cell counting
community standards. However, better performance
could probably be achieved by increasing the
sophistication of the approach. For example, adding
multiscale auxiliary networks at the output of the
right hand blocks of the U-Net, as proposed in He
et al. (2021), looks promising since an improvement of
about three points in average relative errors is reported
for two challenging cell datasets. But this comes with
more parameters to train and more hyperparameters
to set, since two more losses need to be weighted in
the overall loss function. Replacing isotropic Gaussian
functions by anisotropic ones following the cells main
orientations, like in Sierra et al. (2020), could also
be an option, but this would require a more complex
manual annotation, as the bounding box of each cell is
needed.

CONCLUSION

In this paper, a cell counting method has been
adapted to deal with a challenging database. This
confirms the interest of adopting a regression approach
to estimate a local cell density: it reaches a satisfactory
trade-off between annotation effort and counting
precision. We also show how to apply the method to
large field images, which opens new perspectives for
whole skin samples characterisations.
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Found: 116 cells Truth: 124 cells

Found: 78 cells Truth: 85 cells

Found: 78 cells Truth: 58 cells

Found: 92 cells Truth: 121 cells

Fig. 6. Examples of results obtained on images from the test set. From left to right: input images, corresponding
output with the counted number of cells, ground truth density map with the correct number of cells.
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Fig. 7. Example of a quarter of skin sample, covering a 30000× 26624 pixels image split into four sub-images,
on which our algorithm was applied.

Moreover, the database used in this study is shared
with the research community.
We believe that the next challenge in this type of
problem is reducing even more the annotation effort.
To that aim, we envision two possible research paths:
1) using active learning during annotation, as to
precisely adapt the effort to the task at hand; 2) using
generative adversarial networks.
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