
Image Anal Stereol 2021;40:95-103 doi: 10.5566/ias.2554
Original Research Paper

LOCAL MEASURES DISTRIBUTION FOR THE ESTIMATION OF THE
ELONGATION RATIO OF THE TYPICAL GRAIN IN HOMOGENEOUS
BOOLEAN MODELS.

TATYANA EREMINA�, JOHAN DEBAYLE, FRÉDÉRIC GRUY AND JEAN-CHARLES PINOLI
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ABSTRACT

We introduce a particular localization of the Minkowski functionals to characterize and discriminate different
random spatial structures. The aim of this paper is to present a method estimating the typical grain elongation
ratio in a homogeneous Boolean model. The use of this method is demonstrated on a range of Boolean
models of rectangles featuring fixed and random elongation ratio. An optimization algorithm is performed to
determine the elongation ratio which maximize the likelihood function of the probability density associated
with the local perimeter measure. Therefore, the elongation ratio of the typical grain can be deduced.
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INTRODUCTION

The structure of granular media – as could
be encountered, for example, in materials and
chemical sciences – is a complex concept from
the geometric and topological point of view. Some
spatial configurations occurring in natural or industrial
processes could be modeled by random closed sets
(RACS), as was first suggested by Matheron (1975).
Thereby Stochastic Geometry provides quantitative
descriptors to control and quantify the processes.
The purely probabilistic characteristics (as Choquet
capacity and correlation functions (Ballani, 2007;
Molchanov and Stoyan, 1994)) are generally difficult
to connect to the geometric characteristics of the
random set. Complete characterization of the effective
morphology requires knowledge of an infinite set
of n-point statistical correlation functions (Arns et
al., 2002). On the other hand, Integral Geometry
(Mecke, 2000; Santaló, 1976) offers a complete
system of morphological descriptors – the Minkowski
functionals (MFs) (with different normalization
they are also referred to as intrinsic volumes
or quermassintegrals). Indeed, the Hadwiger’s
characterization theorem (Hadwiger, 1957; Klain and
Rota, 1997) states that all morphological information
is essentially contained in this family of MFs,
see e.g. Sevink (2007). In R2 they coincide up to
normalization with classical geometric measurements:
Euler-Poincaré characteristic V0(·), perimeter V1(·)
and area V2(·). Thus the study of the probability
distributions of MFs of the random closed sets gives
access to the morphology description on different

levels (global – of the entire structure, local – in the
neighbourhood of a point, or individual – morphology
of the typical grain).

The main contribution of this paper is to show how
the local measures could be used to distinguish the
typical grain morphology in a planar germ-grain model
– otherwise inaccessible due to the superimposition of
grains. A method based on the maximum likelihood
estimation of the probability density functions of
local measures has been developed to estimate the
“elongation ratio” of the typical grain in a germ-grain
model. In the first section the geometric measures
on the random closed sets and their localizations
are introduced. In the next section we describe a
particular system of the planar Boolean models of
rectangles. Two types of random rectangles will be
of interest – with fixed and random elongation ratio.
From there on the realizations of the Boolean model
we demonstrate the results on the elongation ratio
estimation. The final section is devoted to simulation
results of the elongation ratio estimation for Boolean
model of rectangles.

CHARACTERIZATION OF RACS
VIA MINKOWSKI FUNCTIONALS

The Minkowski functionals (MF) play an
important role in the geometrical characterization
of spatial structures, quantifying certain properties
such as volume, surface area or mean width. These
functionals are also known as the intrinsic volumes

95



EREMINA T et al.: Elongation ratio in Boolean Model

V0, . . . ,Vd . They could be defined as coefficients of
Steiner polynomials. For a set A ⊂ Rd and r > 0,
the volume of its r-parallel set A⊕r = {x ∈ Rd :
inf
y∈A
‖x− y‖ ≤ r} is a polynomial in r:

H d(A⊕r) =
d

∑
s=0

bd−sVs(A) · rd−s, (Steiner formula)

where H d is the d-dimensional Hausdorff measure
and bd−s is the volume of (d−s)-dimensional unit ball
in Rd .

The global characteristics of a random closed set Ξ̃

could be assessed by asymptotic values of Minkowski
functionals – the specific intrinsic volumes:

V s(Ξ̃) = lim
n→∞

EVs(Ξ̃∩nW )

Vd(nW )
(1)

This limit exists for each s = 0, . . . ,d and for
any sequence {nW} of compact convex observation
windows such that Vd(W ) > 0 and the origin of Rd is
in W , see Schneider and Weil (2008, Theorem 9.2.1).
The functional V s(Ξ̃) is called the s-th specific intrinsic
volume of Ξ̃. For detailed introduction see Schneider
and Weil (2008).

However, the global measurements are not always
suitable for the description of a complex spatial
structure. For example, in Fig.1 two spatial structures
possess the same global area, perimeter and Euler-
Poincaré characteristic, while presenting strongly
different morphologies.

(a) (b)

Fig. 1: Realizations of two homogeneous Boolean
models of rectangles. The global measures remain
equal (equal MF densities – area density, perimeter
density and specific Euler-Poincaré characteristic),
and equal intensity of the underlying point process.

To overcome this stiffness and get finer geometric
characterization of a complex random spatial structure
different extensions of MFs were developed in the
literature. Among them are the curvature measures
(Schneider, 2014), MFs of parallel sets to discriminate

morphologies (Arns et al., 2002), first and second
order properties of MFs (Rahmani et al., 2017),
combinations of MFs – shape diagrams (Presles et al.,
2012).

LOCALIZATION OF MINKOWSKI
FUNCTIONALS
This paper is concentrated on a particular

localization of MFs – random measures induced by a
structure Ξ̃ for any Borel set A ∈BRd (i.e. the Borel
σ -algebra):

H s(Ξ̃∩A),s = 0, . . . ,d, (2)

H s – s-dimensional Hausdorff measure in Rd .

For the discussion on the measurability of the random
variables H s(Ξ̃) see Zähle (1982); Baddeley and
Molchanov (1997)..

Thus, the Minkowski measures (2) are the
restrictions of the Minkowski functionals to Borel sets,
allowing a local analysis of the structure (Legland
et al., 2007; Pinoli, 2014, p. 110). Here the set A,
referred to as the test set. The local measures of the
random closed set, as considered in this paper, admit
two degrees of stochasticity: one for the random set to
be characterized and the other for the location of the
test set. Formally speaking, let Ξ̃ be a d-dimensional
random closed set Ξ̃ : Ω→ F and x̃ be a random point
x̃ : Ω′→Rd . Then local measures are determined for a
random pair:

(Ξ̃, x̃) : (Ω×Ω
′)→ (F×Rd). (3)

Further, we would refer to this pair as main set Ξ̃ and x̃
will determinate the location of a test set. The number
of realizations of a random set Ξ̃ is denoted by N and
the number of locations of a test set by nloc.

The descriptors for the geometric characterization
of a spatial structure (i.e. the random closed set Ξ̃) are
then the probability distributions of the values taken
by the Minkowski measures (2) on the realizations of
a random pair (Ξ̃, x̃).

Few theoretical advancements on the local
measures of the random closed sets could be found
in the literature. The asymptotic values of the
local measures are given by the specific intrinsic
volumes (1). If we restrict Ξ̃ to be a Boolean model
(Chiu et al., 2013, ch. 3) (union set of a uniformly
distributed realizations of a random closed set – typical
grain), then the MF densities can be used to obtain
the estimators of the expectation of MFs of the typical
grain and also of the Boolean model intensity using so
called Davy-Miles’ formulae (Miles, 1976). In other
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words, under suitable assumptions, the observable
quantitative descriptors (Minkowski functionals) of the
union set allow us to obtain estimators for the certain
parameters of the underlying particle process (Weil,
2001; Schneider and Weil, 2008).

(a) local Euler-Poincaré measure

(b) local perimeter measure

(c) local area measure normalized by the area of a test set

Fig. 2: Probability mass function and probability
density functions of the local measures compared for
BMs of rectangles in Fig. (1a) in blue and (1b) in red.

Localizations of that type show a particular interest
in materials science. The first generalized Minkowski
measure – Euler-Poincaré characteristic, showed to be
highly correlated to the percolation (for a study on
percolation in Boolean models see Scholz et al. (2015),
study of a local porosity distribution (Hilfer, 2000),
percolation in a Fontainebleau sandstone (Arns et al.,
2005)).

Let the test set be an open ball with a radius r > 0
centered in a random point x̃ ∈ Rd . We concentrate
on the random measures induced by localizations
of Minkowski functionals. The (d − 1)-th and d-th
Minkowski measures (2) are written as:

Vd−1(Ξ̃, x̃) = H d−1 (
∂ Ξ̃∩Br(x̃)

)
; (4)

Vd(Ξ̃, x̃) = H d (
Ξ̃∩Br(x̃)

)
. (5)

They will be further referred to as the local
perimeter measure (4) and the local area measure (5)

respectively. Note, that for one realization x of x̃ these
local measures are straightforward generalizations of
Minkowski functionals. Indeed, they are the restriction
of the MFs to a particular set Br(x). Consider a very
large random structure Ξ̃, and for its every realization
Ξ take values of the Minkowski functionals for Ξ∩
Br(x̃). For different positions of test set (i.e. different
x̃) different values are obtained, which provide d
measures in the sense of the measure theory: mappings
which assign real numbers to sets and which become
“random measures” for random structures, see Chiu et
al. (2013, ch. 7) for an introduction.

An example of the constructed descriptors Vs(Ξ̃, x̃),
s = 0,1,2 in R2 is showed on Fig. 2. The probability
mass function (s = 0) and the probability density
functions (s = 1,2) of local measures are depicted
here for two particular random sets. The local
Euler-Poincaré measure 2a has a discrete probability
distribution and takes entire values due to the nature of
the Euler-Poincaré characteristic. The local perimeter
measure 2b is a continuous non-negative real-valued
random variable. Due to the choice of a particular test
set this pdf shows a peak at 0 (for some realizations
of x̃ the test set entirely lies in the main set Ξ̃) and
intermediate peaks which correlate with the size of
the test set. The local area measure 2c is a continuous
positive real-valued random variable, once normalized
by the area of a test set, it takes value in ]0,1], 1 when
test set falls entirely into a main set Ξ̃.

The expectations of the local measures Vs(Ξ̃, x̃) in
the case of statistical homogeneity are given (Arns et
al., 2005) by the product of the d-dimensional volume
Vd(Br(x̃)) = bdrd of the test set Br(x̃) and a constant
dependent on Ξ̃.

EVs(Ξ̃, x̃) = bdrdV s(Ξ̃), s = 0, . . . ,d. (6)

In R2 – perimeter density V 1(Ξ̃) and area density
V 2(Ξ̃) for the local perimeter measure (4) and the local
area measure (5) respectively.

Thus the expectation of the local measures,
yet giving the first information about Ξ̃, does not
determine its distribution. For a more complex spatial
structure as a Boolean model, the typical grain
morphology could not be accessed using the global
MFs, neither by first moments of the local measures,
as they depend only on the global MFs. That is
why the distributions of local measures (4)-(5) for
the Boolean model are studied. This methodology
has been previously studied by Arns et al. (2005) to
characterize the Fontainebleau sandstone.

97



EREMINA T et al.: Elongation ratio in Boolean Model

LOCAL MEASURES OF BOOLEAN
MODEL OF RECTANGLES

A Boolean model (BM) is particular random closed
set defined as (see e.g. Baddeley et al. (2006) and
references therein):

Ξ̃ =
∞⋃

i=1

(zi +Zi), (7)

where the points (germs) zi belong to a stationary
Poisson process in Rd of intensity λ , while the grains
Zi are i.i.d. random compact sets in a mark space K,
independent from the germs zi. The typical grain of the
Boolean model is a random closed set Z0 with the same
distribution as Zi. The typical grain could be suitably
parameterized Z0 = Z0(s̃). For instance, in a case of a
Boolean model with spherical grains K = R+ and s̃ is
the radius of a random ball; in a case of rectangular
grains K= R+×R+× [0,2π[ and s̃ = (A,B,φ) where
A and B are the random length and width, φ is the
random orientation of the rectangle which left-bottom
corner is at the origin; etc. Note that the Boolean model
can be introduced in a more general way with grains
only supposed to be compact, the characterization of
such a model will not be our objective here.

We compare the sensitivity of the local measures to
deviations in the elongation ratio of the typical grain.
To do this the homogeneous Boolean models Ξ̃ of
rectangles with different elongations are considered.
They are constructed in such a way that the global
measures V 0(Ξ̃),V 1(Ξ̃),V 2(Ξ̃) keep the same values.

In the first dataset the typical grain is a randomly
oriented rectangle of gamma-distributed width and
fixed elongation ratio e = 1.5, . . . ,10. One realization
of a homogeneous Boolean model of rectangles with
fixed elongation ratio gives one simulated spatial
structure. The exact parameters are listed further, see
Eq. (11)-(14). The examples from this dataset could be
seen in Fig. 3 (1st row).

In the second dataset, the typical grain is a
randomly oriented rectangle of gamma-distributed
width and random elongation ratio – log-normally
distributed with E ẽ = 1.5, . . . ,10 and V ẽ = 0.25. For
each rectangle an elongation ratio is generated from
the log-normal distribution with the corresponding
expectation. The elongation ratio distributions are
depicted in Fig. 5. A homogeneous Boolean model of
rectangles with random elongation ratio is obtained.
Its parameters are listed in Eq. (11)-(16). Some
examples of the BM realizations are represented in
Fig. 4 (1st row).

Fig. 5: Log-normal distributions for the elongation
ratio of rectangular grains in the Boolean models.
E ẽ = 1.5,2, . . . ,9.5,10 (blue→red).

The BM realizations in Fig. 1 are taken from the
first dataset with fixed elongation ratio. As shown
in Fig. 2a and Fig. 2c the local Euler-Poincaré
and local area measures are quite similar for this
range of Boolean models. It is also impossible to
distinguish these models using the global MFs – the
system (11)-(16) was constructed in a manner that
global measures are equal. For example for models in
Fig. 1 the reference values are V 2(Ξ̃) = 0.7,V 1(Ξ̃) =
0.0144,V 0(Ξ̃) = −7.6998×10−5. However, the local
perimeter measure in Fig. 2b indeed allows to
distinguish these systems and allows the shape of the
typical grain to be estimated. Further, a method based
on the local perimeter distribution for estimating the
elongation ratio is suggested.

ESTIMATION OF THE ELONGATION
RATIO OF THE TYPICAL GRAIN

We propose a method for estimating the typical
grain elongation ratio based on the local perimeter
measure distribution. For a one-grain model (simple
random closed set – a random disk or a random
rectangle) the analytical expression for the local
perimeter measure distribution could be obtained
directly. However, for complex spatial structures one
should have recourse to numerical methods.

To test the sensitivity of local measures to the
typical grain elongation ratio e in a homogeneous
Boolean model, the global MFs were fixed. Their
values are given in Table 1.
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(a) area density 0.2 (b) area density 0.4 (c) area density 0.9

Fig. 3: (1st row) Samples of BMs of rectangles with fixed elongation ratio e = 3. (2nd row) Probability density
functions of the local perimeter measure of BMs of rectangles with the growing typical grain elongation ratio.
The distributions are normalized by the total number of samples and the bin width.

(a) area density 0.2 (b) area density 0.4 (c) area density 0.9

Fig. 4: (1st row) Samples of BMs of rectangles with log-normally random elongation ratio expectation E ẽ = 3.
(2nd row) Probability density functions of the local perimeter measure of BMs of rectangles with the growing
typical grain elongation ratio. The distributions are normalized by the total number of samples and the bin width.

99



EREMINA T et al.: Elongation ratio in Boolean Model

V 2(Ξ̃) V 1(Ξ̃) V 0(Ξ̃)

0.2 0.0071 5.1118×10−5

0.3 0.0100 5.4515×10−5

0.4 0.0123 4.2860×10−5

0.5 0.0139 1.6283×10−5

0.6 0.0147 −2.4433×10−5

0.7 0.0144 −7.6998×10−5

0.8 0.0129 −1.3509×10−4

0.9 0.0092 −1.7792×10−4

Table 1: Fixed values of global MFs for the Boolean
models simulation (for both datasets – with fixed and
random elongation ratio).

Once the global MFs are fixed, the inverse Davy-
Miles’ formulae gives the intensity value and the MFs
of the typical grain:

λ =

(
V 1(Ξ̃)

2

π
(
1−V 2(Ξ̃)

) +V 0(Ξ̃)

)
· 1

1−V 2(Ξ̃)
; (8)

EV1(Z0) =
πV 1(Ξ̃)

(
1−V 2(Ξ̃)

)
V 1(Ξ̃)2 +πV 0(Ξ̃)

(
1−V 2(Ξ̃)

) ; (9)

EV2(Z0) =−
ln
(
1−V 2(Ξ̃)

)
λ

. (10)

The intensity λ was chosen to fit the densities
V 2(Ξ̃),V 1(Ξ̃),V 0(Ξ̃) according to Eq. (8).

The following parameters are chosen for the
simulation of the Boolean models with different
morphologies Ξ̃λ ,A,B,φ in the observation window W =

[0,512]2. The typical grain Z0 is a random rectangle:

rectangle sides: A = e ·B, B∼ Γ

(
µ2

σ2 ,
µ

σ2

)
, (11)

where µ =
EV1(Z0)

1+ e
, σ

2 =
EV2(Z0)

e
−µ

2; (12)

φ ∼U [0,2π[ . (13)
Fixed elongation ratio e = 1.5,2, . . . ,9.5,10. (14)
Or random elongation ratio ẽ∼ Lognormal(E ẽ,V ẽ),

(15)
where E ẽ = 1.5,2, . . . ,9.5,10; V ẽ = 0.25. (16)

Test set Br(x̃),r =
EV1(Z0)

4
; x̃∼U(Ξ̃λ ,A,B,φ ∩W ).

(17)

To get a stable numerical distribution of a local
measure N = 50000 realizations of a BM and nloc =
500 positions of a test set are generated. The size of
the test set was chosen based on the previous study of

Arns et al. (2005). Indeed, the smaller radius of the test
set leads to a peak at 0 in the local perimeter measure
V1(Ξ̃, x̃) = H 1

(
∂ Ξ̃∩Br(x̃)

)
distribution, as the test

set lie fully in the main set Ξ̃. On the other hand,
the bigger size of the test set reveal more “global”
morphology and the variance in the distributions of the
local perimeter measure vanishes. An intermediate size
of a test set should be chosen. For the studied datasets,
in the hypothesis of a rectangular typical grain Z0, and
in view of the obtained values of the MFs Eq. (9)-
(10) of the typical grain, a test sizes r = EV1(Z0)

4 is
suggested, as it allows to distinguish better the pdfs of
the local perimeter measure.

Figure 3 (1st row) shows the realizations
of the Boolean models of rectangles with fixed
elongation ratio e = 3 and different area densities.
Figure 4 (1st row) gives an example of realizations
of the Boolean models of rectangles with the random
elongation ratio which is log-normally distributed with
E ẽ = 3 and different area densities. All BMs of
rectangles used for the illustration of the results in this
article are constructed with the parameters exposed in
Eq. (11)-(16). The distributions of the local perimeter
measure are compared for a system with the fixed and
random elongation ratio in order to characterize the
elongation ratio of the typical grain.

MAXIMUM LIKELIHOOD ESTIMATION
Let (P1,P2, . . . ,Pn), n ≥ 1 be the realizations of

the continuous real-valued random variable – the
local perimeter measure V1(Ξ̃, x̃). The subscript n here
reflects the total number of realizations of a random
pair (Ξ̃, x̃). Explicitly,

n = N ·nloc, (18)

where N stands for the number of realizations of an
unknown Boolean model of rectangles Ξ̃, and nloc –
for the number of random locations x̃ of a test set. The
likelihood of e in view of n observations (P1,P2, . . . ,Pn)
is defined as follows:

L
Ξ̃
(e) =

n

∏
i=1

fe(Pi). (19)

where fe is the distribution of the variable P
parameterized by e: fe : R→ R+. As the locations of
the test set are independent and identically distributed,
so are the local perimeter measure values. Then, the
maximum likelihood of the elongation ratio e could be
estimated as:

ê = argmax
e

L
Ξ̃
(e). (20)

For computational purposes, it is more
convenient to use a log-likelihood function (a
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logarithmic transformation of the likelihood function
is monotonously increasing and preserves the
maximum). Thus, we obtain an optimization problem
formulated as follows:

ln(L
Ξ̃
(e)) =

n

∑
i=1

ln( fe(Pi)) , (21)

ê = argmax
e

n

∑
i=1

ln( fe(Pi)) . (22)

In the present study only one parameter is to be
optimized – the elongation ratio, it has been decided
to use a direct search. For computational reasons, the
elongation ratio e was sampled with a step equal to 0.5.

We quantify the error in the estimation of the
elongation ratio for the different model morphologies
by employing a relative mean error:

RME =
1
m

m

∑
i=1

|êi− e|
e

. (23)

(a) For the BMs with the area density 0.4 in Fig. 3(b). Fixed
elongation ratio e = 1.5,2, . . . ,9.5,10 (blue→red).

(b) For the BMs with the area density 0.9 in
Fig. 4(c). Random elongation ratio expectation
E ẽ = 1.5,2, . . . ,9.5,10 (blue→red).

Fig. 6: RME in the elongation ratio estimation for both
systems of BMs of rectangles.

The same steps are followed for the estimation of
the expectation of the elongation ratio E ẽ in the case
of the Boolean models of rectangles with the random
elongation ratio.

RESULTS

As explained previously the global integral
geometric measures could take the same values on
very different structures. On the other hand, the local
measures yield a supplementary information on the
morphology of the spatial structure.

In Fig. 3 (2nd row) and 4 (2nd row) the correlation
between the local perimeter measure and the typical
grain elongation ratio is evidenced by comparing the
probability density distributions of the local perimeter
measure for the Boolean models of rectangles with all
identical characteristics except for the elongation ratio.

Two datasets of Boolean models are used to
validate the proposed method of the elongation
ratio estimation. Tests are conducted on the
simulated spatial structures – the realizations of the
homogeneous Boolean models featuring equal global
measures. For such a range of the BMs of rectangles
with known elongation ratio (the elongation ratio
distribution expectation in a case of the random
elongation ratio), N ≥ 1 realizations are generated
and a local measure distribution is performed. Then,
the elongation ratio is estimated using the method
proposed in the previous section. To be statistically
consistent, the procedure is repeated m = 100 times
for each N.

Figure 6 shows the relative mean error for the
homogeneous Boolean models with parameters (11)-
(16). The estimation is more difficult for the Boolean
models with grains of intermediate elongation ratio
(see Fig. 7), and that despite the area density of
the Boolean model. It is worth pointing out that
even at high area density (0.9), when most grains
overlap and the local analysis of the spatial structure
is complicated, the prediction of the elongation ratio
is still good. Indeed, the error in the estimation of
e for the BMs of rectangles is < 10% at N = 100
realizations and < 5% at N = 500 despite the density
of the spatial structure. The relative mean error for two
chosen configurations is explicitly given in Table 2.

101



EREMINA T et al.: Elongation ratio in Boolean Model

Fig. 7: Relative mean error of the elongation ratio
estimation for the number of realizations N = 100 at
the highest area density 0.9 for a Boolean model of
rectangles with the random elongation ratio.

CONCLUSION AND PERSPECTIVES

In this paper the local measures distribution
estimation is applied to the particular RACS – a
homogeneous Boolean model of rectangles uniformly
randomly oriented and with a fixed or random
elongation ratio. The correlation between the local
perimeter measure and the typical grain elongation
ratio is evidenced. Based on this correlation, a method
has been developed to estimate the elongation ratio
of the typical grain in a Boolean model. Under the
hypothesis of a known shape of the typical grain
(random rectangle in R+ × R+ × [0,2π[), it has
been demonstrated that it is possible to retrieve the
elongation ratio of a rectangle despite the area density
of the structure. Moreover, it has been shown that the
nature of the elongation ratio (fixed or random) has
a little influence on the accuracy of the estimation

as long as the number of the BM realizations is big
enough (error is < 10% at N = 100).

In practice these typical grain elongation ratio
analysis could for example be useful to control
the pharmaceutical crystallization processes in order
to assess the crystal growth rate (Ahmad et al.,
2012). Next steps are the identification of the further
relationships between the local measures distributions
and the quantitative descriptors of the porous media
(porosity, rugosity, tortuosity, etc.). A second prospect
is to investigate other germ-grain models.
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