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ABSTRACT

The first version of the Retinal IMage database for Optic Nerve Evaluation (RIM-ONE) was published in
2011. This was followed by two more, turning it into one of the most cited public retinography databases for
evaluating glaucoma. Although it was initially intended to be a database with reference images for segmenting
the optic disc, in recent years we have observed that its use has been more oriented toward training and
testing deep learning models. The recent REFUGE challenge laid out some criteria that a set of images of
these characteristics must satisfy to be used as a standard reference for validating deep learning methods that
rely on the use of these data. This, combined with the certain confusion and even improper use observed
in some cases of the three versions published, led us to consider revising and combining them into a new,
publicly available version called RIM-ONE DL (RIM-ONE for Deep Learning). This paper describes this set
of images, consisting of 313 retinographies from normal subjects and 172 retinographies from patients with
glaucoma. All of these images have been assessed by two experts and include a manual segmentation of the
disc and cup. It also describes an evaluation benchmark with different models of well-known convolutional
neural networks.
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INTRODUCTION

The term glaucoma refers to a group of pathologies
that affect the optic nerve and involve the loss of
retinal ganglion cells, which is frequently associated
with an increase in intraocular pressure. It is one of
the leading causes of blindness in the world (Tham
et al., 2014) and, since the progression of the disease
is typically asymptomatic, early detection is quite
difficult. There are different techniques for viewing
the retina that help in making this diagnosis. One of
them is a retinography, which is a color photograph
of the fundus of the eye. Fig. 1 shows an example
of a retinography, where the most relevant parts for
diagnosing glaucoma have been highlighted: the optic
disc, the cup and the neuroretinal rim. In fact, since
this is the most important part of the retinography, it is
typical to cut around it and discard the rest. As in other
fields, automated learning-based diagnoses, and more
specifically the technique known as deep learning,
have taken on great significance. The key to the proper
functioning of these methods is the availability of
a sufficient amount of data with which to train and
test the system. In addition, validating these methods
requires a reference standard that can be used for
comparison. In the case at hand, this involves having

public retinography databases that satisfy a series of
requirements, which must also be clearly defined. In
the very recent paper on the Retinal Fundus Glaucoma
Challenge (REFUGE) (Orlando et al., 2020), written
by researchers from 20 institutions, a very important
step is taken in this direction by suggesting certain
criteria that can be used to compare these methods in
terms of both classifying the glaucoma and segmenting
the disc and cup:

1. Availability of publicly-accessible sets of images,
labelled by several experts, sufficient enough in
number that they can be used in deep-learning
methods.

2. Clear separation between training and test sets. As
noted in (Trucco et al., 2013), a comparison of the
results may be unreliable without said separation.

3. Presence of diversity in the set of images,
with diversity meaning having images captured
by various devices involving different patient
ethnicities, and images taken in different lighting,
contrast, noise and other conditions.

4. In addition to having a preliminary diagnosis,
include also manual reference segmentations of the
disc and cup.
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5. Provide an evaluation framework that includes the
metrics used and the format for presenting the
results.

The first open version of the set of fundus
images called Retinal IMage database for Optic
Nerve Evaluation (RIM-ONE) was published in 2011
(Fumero et al., 2011). Two other versions followed,
in 2014 and 2015. They will be referred to in this
paper as RIM-ONE v1, v2 and v3, respectively.
Since its publication, it has been cited 179 times,
becoming, based on our data, the most cited public set
of retinographies for evaluating glaucoma. Although
it was initially intended to be used as a database
of reference images for segmenting the optic disc,
in recent years we have observed that its use has
been more oriented toward training and testing deep
learning models. This, combined with the certain
confusion and even improper use observed in some
cases of the three versions published, led us to consider
revising and combining them into a new version
called RIM-ONE DL (RIM-ONE for Deep Learning),
optimized for a deep-learning context in keeping with
the specifications explained earlier. Furthermore, for
benchmarking purposes, we studied the performance
of various convolutional neural network models that
are very popular, due to their widespread use for the
classification and semantic segmentation of natural
images. As a result, we hope to lay the foundations to
have RIM-ONE DL become a reference for evaluating
glaucoma, like the previous versions were.

Fig. 1: Sample retinography with the most relevant
regions for diagnosing glaucoma.

The rest of the paper is structured as follows.
The section on “Related Work” describes other sets
of public images for evaluating glaucoma. The “RIM-
ONE database” section presents the different versions
of this imaging database and analyzes the feedback
received over its nearly ten years of use. The
“Materials and Methods” section describes RIM-ONE
DL, underscoring the changes made with respect to
previous versions and explaining the neural network
models and the metrics used in the benchmark. We
conclude with the “Results and Discussion” section.

RELATED WORK

There are not too many public sets of images of
the fundus of the eye for evaluating glaucoma, whether
for classification or for segmenting the optic disc and
cup. ORIGA (Zhang et al., 2010) is composed of 168
images from patients with glaucoma and 482 from
healthy patients. The data also include the disc and
cup segmentation. The problem with this database is
that even though it appears to have been public at one
point, as far as we can tell, it stopped being public quite
some time ago. DRISHTI-GS (Sivaswamy et al., 2014)
consists of 70 images of glaucoma and 31 normal
images. It also includes the disc and cup segmentation.
DR HAGIS (Holm et al., 2017), HRF (Odstrcilik et al.,
2013), and LES-AV (Orlando et al., 2018) are small
sets with 39, 45 and 22 images, respectively, with no
disc and cup segmentation. The ACRIMA set (Diaz-
Pinto et al., 2019) contains 396 images from patients
with glaucoma and 309 images from healthy patients.
It also does not include segmentation of the disc or
cup. Finally, the recent REFUGE database (Orlando
et al., 2020) contains 120 images from patients with
glaucoma and 1080 images from healthy patients with
disc and cup segmentation.

It is important to note that of all the sets mentioned,
only REFUGE satisfies the additional requirements of
offering images from different cameras, as well as
a clear division of the training and test data. There
seems to be a clear need, then, to expand the number
of public image databases available that comply with
these requirements.

THE RIM-ONE DATABASE

The images in the three versions of RIM-
ONE include healthy and glaucomatous eyes, and
were taken in various Spanish hospitals: Hospital
Universitario de Canarias (HUC), in Tenerife, Hospital
Universitario Miguel Servet (HUMS), in Zaragoza,
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and Hospital Clı́nico Universitario San Carlos
(HCSC), in Madrid. The repository of retinographies
is accessible through the website of the research group
at https://medimrg.webs.ull.es.

CRITICAL REVISION OF THE THREE
VERSIONS OF RIM-ONE
RIM-ONE v1 was presented in 2011 at the 24th

International Symposium on Computer-Based Medical
Systems (CBMS) (Fumero et al., 2011). The main
goal of this work was to provide an open database
of retinographies from 118 healthy subjects and 51
patients with various stages of glaucoma. In addition
to a diagnosis, it included a manual segmentation
of the optic disc, carried out by five experts in the
field. This was the main goal of its publication,
to provide a reference for assessing methods to
segment the disc. The images were taken at the three
hospitals mentioned above using a Nidek AFC-210
non-mydriatic fundus camera with a 21.1-megapixel
Canon EOS 5D Mark II body, with a vertical and
horizontal field of view of 45◦.

RIM-ONE v2 was published in 2014. It contains
255 images from healthy subjects and 200 images from
patients with glaucoma that are manually segmented
by a medical specialist. In this case, the images were
taken at HUC and the Hospital Universitario Miguel
Servet using the same camera as in v1. It is important
to note that this version was designed as an extension
of the first; as a result, some images are duplicated.
It also includes some test-retest cases that give rise to
images that are practically identical.

RIM-ONE v3 was published in 2015 and contains
85 images of healthy subjects and 74 images of
patients with glaucoma. The main difference between
this version and the two previous ones is that the
images were captured only in the HUC with a non-
mydriatic Kowa WX 3D stereo fundus camera. The
images are centered on the ONH using a field angle
of 34◦, giving a final stereo image with a horizontal
field of view of 20◦ and a vertical field of view of
27◦, with a total resolution of 2144 x 1424 pixels
(1072 x 1424 pixels per image in the stereo pair).
Having stereo images available resulted in a manual
segmentation of not only the optic disc, but of the
cup as well. Two specialists carried out this task with
help from the freely distributed DCSeg tool. More
details on this version and on the tool are available at
(Fumero et al., 2015). It should be noted that some of
the subjects whose retinographies are contained in v2
are also present in v3.

As was stated in the introduction, a critical review
of these three versions is necessary in order to

determine how well they comply with the criteria
in place for using them in methods based on deep
learning:

1. Although it may be tempting to combine the three
versions for use in deep-learning problems, as
indicated earlier, indiscriminately combining the
images could result in their inappropriate use. It
should also be noted that there is no consistency
between the three versions in terms of the labelling
of the images, as this was not always done by the
same experts.

2. Since RIM-ONE was not originally designed for
deep learning, a clear division between training
and test images was never established.

3. The RIM-ONE images were taken in different
hospitals with different cameras, but only one
camera was used in each version.

4. In this area there is also little consistency between
versions, since in the first two only the disc is
segmented, while the cup is also segmented in v3.
As happened with the diagnosis, the specialists
involved in the manual segmentation were not the
same in every case.

5. Although version 1 does propose a criterion for
evaluating the quality of the disc segmentation, no
details are given on the metrics for evaluating the
diagnosis, since that was not the initial idea.

The “Materials and Methods” section details the
process used to attempt to resolve these problems with
RIM-ONE DL.

FEEDBACK ON THE EXPERIENCE
WITH RIM-ONE
Using a procedure similar to that presented in

(Decencière et al., 2014) for the well-known Messidor
database for segmenting the optic disc in diabetic
retinography images, in this section we will focus on
the feedback received over the nearly 10 years that
RIM-ONE has been publicly available. To provide
a quantitative idea of the impact that its publication
has had, we used as a reference the total number
of citations, which is 179. Moreover, Fig. 2 shows
the recorded trend in terms of the primary purpose
for which RIM-ONE has been used. In its early
years, a large majority of the uses were centered on
segmentation tasks. However, the last two years have
seen a very significant increase in the number of
publications in which its use was associated with deep-
learning problems, a use that in 2019 even outpaced
the number of works involving segmentation. This
reinforces the need to have a revised and updated
version of RIM-ONE that can satisfy this new trend.
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Fig. 2: Number of citations of RIM-ONE. Blue: RIM-
ONE for segmentation, Red: RIM-ONE for Deep
Learning.

MATERIALS AND METHODS

RIM-ONE DL
In this section, we describe RIM-ONE DL, which

results from combining the three previous versions.
This new version does away with the duplicate images
contained in v1 and v2, and it also eliminates the test-
retest images in v2. The images of the same patient in
v2 and v3 were also deleted, with only the left image
from v3 being retained. The result is a single image per
patient and eye. Moreover, all the images were cropped
squarely around the head of the optic nerve using
the same proportionality criterion, something that was
not done in the previous versions. Table 1 shows the
minimum and maximum size of these cropped images
per version and the hospital where the images were
taken. Furthermore, the format of all the images in this
new version is PNG, and the file names are prefixed
with “r1”, “r2” or “r3” according to the RIM-ONE
version they were extracted from.

Table 1: Minimum and maximum size of the cropped
images of RIM-ONE DL per version, indicating the
hospital where the images were taken.

Version Hospital Min. Size Max. Size
v1 HCSC, HUMS 316 708
v2 HUC, HUMS 274 793
v3 HUC 318 626

As concerns its use in deep-learning problems,
and as discussed in previous sections, we note the
following:

1. The final set of images consists of 313 images from
healthy subjects and 172 images from patients with

glaucoma. In order to standardize the criterion
of experts for classifying glaucoma, two experts
again reviewed all the images and re-labelled
them after a visual inspection. In the event of a
disagreement between them, a third specialist with
20 years of experience was consulted, who made
the final decision.

2. A clear division is established between the training
and test sets, with two variants. In one, the test set
is built randomly, while in the other, the samples
taken in the HUC are used for training and the
samples taken in the two other hospitals (in Madrid
and Zaragoza) are used for testing.

3. This combined version exhibits great diversity in
terms of the cameras and hospitals.

4. In addition to the ground truth for classification,
the set includes the manual segmentation of the
disc and cup performed by one of the specialists.

5. The sub-section below details the evaluation
framework for classifying the glaucoma disease.

Fig. 3 shows some examples of the images
contained in RIM-ONE DL, indicating the hospital
they were taken in. This database is publicly available
at the following location: https://github.com/
miag-ull/rim-one-dl

EVALUATION FRAMEWORK
The evaluation framework proposed contains four

main elements: definition of the training and test
sets, neural network models used, training and testing
strategy employed, and the metrics considered in the
evaluation.

As concerns the training and test sets used, as
noted in the preceding sub-section, two variants are
considered. In the first variant, the set of images was
divided at random into training and testing images
using a 70:30 ratio, respectively. In the second variant,
the images taken at the HUC were used for training
(195 normal and 116 glaucoma), and the images taken
at the two other hospitals were used for testing (118
normal and 56 glaucoma). The only processing done
to the images involved re-scaling them in intensity in
the 0-1 range and resizing them to 224x224x3.

In terms of the neural network models used, most
of the architectures contained in the Keras Deep
Learning Framework were tested: Xception, VGG16,
VGG19, ResNet50, InceptionV3, InceptionResNetV2,
MobileNet, DenseNet121, NASNetMobile and
MobileNetV2. In every case, the size of the input layer
was set to 224x224x3, and a GlobalAveragePooling2D
layer was added to the convolutional base, followed
by a fully-connected output layer with two outputs,
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(a) Image of a healthy subject taken at
Hospital Universitario de Canarias.

(b) Glaucoma image taken at Hospital
Universitario Miguel Servet.

(c) Image of a healthy subject taken at
Hosp. Clı́nico Universitario San Carlos.

Fig. 3: Examples of images included in RIM-ONE DL, indicating in which hospital they were taken.

using SoftMax to distinguish between the Normal and
Glaucoma classes.

The training strategy was the same with both
variants of the data sets. We started with the pre-
trained networks using the weight values of ImageNet
provided by Keras and fine tuned all the layers.
Diaz-Pinto et al. (2019) found that this yielded the
best results. To avoid overfitting, data augmentation
consisting of random rotations (-30◦, 30◦), vertical and
horizontal flip, and zoom (0.8, 1.2) was used.

The steps carried out to fine tune the networks were
as follows:

1. Freeze the convolutional base network.

2. Train the part that was added.

3. Unfreeze all the layers in the base network.

4. Jointly train all the layers in the network.

To increase the reliability of the experiments, a 5-
fold cross-validation was applied, with a proportion of
80% for the training set and 20% for the validation
set in each fold. For each fold, the steps listed were
followed in order to determine the most suitable
number of epochs in 2 and 4. For the training in step 2,
a batch size of 32 was used, along with an RMSprop
optimizer with a learning rate of 2e-5, and categorical
cross-entropy as a loss function. For the training in
step 4, the learning rate was set to 1e-5. Once the
validation phase was complete, the final model for
each network was trained using the whole training data
(no folds) and following the same four steps as before
for the number of epochs that maximized the average
validation accuracy across folds in steps 2 and 4. This
final model was used to evaluate each network in the
test set.

As concerns the metrics used, the outline proposed
in (Orlando et al., 2020) was used, in which the
area under the curve (AUC) is used as a reference
evaluation measure. This measure was complemented
with the sensitivity value (Se = T p/(T p+Fn)) at a
specificity of 0.85 (Sp = T n/(T n+F p)), where T p,
F p, T n and Fn are the number of true positives,
false positives, true negatives and false negatives,
respectively. This allows for an assessment of the
performance of the various networks when a low
rate of false positives is imposed. The third measure
included is accuracy, which is fairly standard in this
type of problem, although it is well-known that it can
exhibit some bias in data sets whose classes are not
properly balanced.

RESULTS AND DISCUSSION

Tables 2 and 3 and figures 4 and 5 show the
results of the glaucoma classifications obtained under
the conditions described in the preceding section. In
the case of the random test sample, the results are
highly satisfactory. The VGG19 network model not
only provided the highest AUC, but its sensitivity also
equalled 1, the highest possible. The other network
model with similar characteristics, VGG16, also
yielded good results. Although a direct comparison
with the results of the REFUGE challenge is not
possible, it is interesting to note that the winning team
(Son et al., 2018) attained an AUC of 0.9885 with a
sensitivity of 0.9752 for a test sample consisting of
360 images from healthy subjects and 40 images from
patients with glaucoma. In the case of the test sample
from the hospitals in Madrid and Zaragoza, there is
a significant drop in all the metrics, with the best
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response again being obtained by networks VGG19
and VGG16. This drop could be explained by the
fact that a set of test images was used whose visual
appearance was rather different from that of the images
used during training. It is important to keep in mind
that the images were captured in different hospitals
under different circumstances, which seems to have
affected the networks. The lack of robustness of this
type of system to distortions that can affect the images,
such as noise, contrast or lighting, has been analyzed
by various authors (Borkar and Karam, 2019). Again,
it is difficult to cite any work to compare against in this
regard. The closest would be (Diaz-Pinto et al., 2019),
in which the Xception network was trained using
images from some public databases, and it was trained
with different databases whose images were taken
under varying conditions. Its results are in keeping
with those stemming from our experiments, with the
exception that in our case, the experts who performed
the reference diagnoses were the same for the training
and test groups, unlike in the aforementioned work.
This leads us to think that even though this factor
could have some influence, the fact that the images
were taken in different conditions is likely to be more
relevant.

Table 2: Evaluation of the different networks using the
random test set.

Network AUC Se Acc.
VGG19 0.9867 1.0000 0.9315
VGG16 0.9834 0.9615 0.9247
Xception 0.9771 0.9808 0.9178
ResNet50 0.9755 0.9808 0.9110
MobileNetV2 0.9738 0.9423 0.9041
DenseNet 0.9726 0.9615 0.9041
MobileNet 0.9712 0.9615 0.9315
InceptionResNetV2 0.9685 0.9808 0.9110
InceptionV3 0.9597 0.9423 0.8904
NASNetMobile 0.9290 0.9231 0.7534

Table 3: Evaluation of the different networks using the
test set from Madrid and Zaragoza.

Network AUC Se Acc.
VGG19 0.9272 0.8750 0.8563
VGG16 0.9177 0.8214 0.8506
InceptionV3 0.9015 0.7500 0.8046
Xception 0.8982 0.7500 0.7989
DenseNet 0.8919 0.7143 0.7816
MobileNet 0.8912 0.7500 0.8276
ResNet50 0.8855 0.7321 0.8333
InceptionResNetV2 0.8396 0.625 0.7644
NASNetMobile 0.7969 0.6071 0.7989
MobileNetV2 0.7765 0.4464 0.5287
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Fig. 4: ROC Curves for all the networks using the
random test set.
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Fig. 5: ROC Curves for all the networks using the test
set from Madrid and Zaragoza.
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