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ABSTRACT

In this paper, we propose a complete framework to process images captured under uncontrolled lighting and
especially under low lighting. By taking advantage of the Logarithmic Image Processing (LIP) context,
we study two novel functional metrics: i) the LIP-multiplicative Asplund metric which is robust to object
absorption variations and ii) the LIP-additive Asplund metric which is robust to variations of source intensity
or camera exposure-time. We introduce robust to noise versions of these metrics. We demonstrate that the
maps of their corresponding distances between an image and a reference template are linked to Mathematical

Morphology. This facilitates their implementation.
Results show that those maps of distances are robust to lighting variations.

lightings and movement.

We assess them in various situations with different

Importantly, they are efficient to detect patterns in low-contrast images with a template acquired under a

different lighting.

Keywords: Asplund metrics, Double-sided probing, Logarithmic Image Processing, Map of Asplund distances,
Mathematical Morphology, Pattern matching, Robustness to lighting variations.

INTRODUCTION

Metrics or their values, namely the distances,
play a central role in image analysis as comparison
tools. They possess strong mathematical properties
(symmetry, separation, triangular inequality) but they
are generally not founded on optical properties.
They are therefore not adapted to the comparison of
images captured under variable lighting conditions.
This issue affects most classical metrics like: the
Euclidean-like distances (Li and Lu, 2009; Wang et al.,
2005), the integral metric, the uniform metric, the
Stepanov distance (or Minkowski distance) (Deza and
Deza, 2016), the Hausdorff metric (Dougherty, 1991;
Huttenlocher et al., 1993) and many others (Deza and
Deza, 2016). The aim of this paper is to propose metric
tools robust to lighting variations.

Analysing images captured with variable lighting
conditions is a challenging task that can occur in many
settings, such as traffic control (Messelodi et al., 2005;
Salti et al., 2015), safety and surveillance (Foresti
et al., 2005), underwater vision (Peng and Cosman,
2017; Ancuti et al., 2018), driving assistance (Hautiere
et al., 2006), face recognition (Chen et al., 2006; Faraji
and Qi, 2016; Hussain Shah et al., 2015; Lai et al.,
2014), large public health databases of images (Noyel
et al., 2017), etc. There is some data in the literature
about the difficulties inherent to this issue. Chen
et al. (2006) observe that the performance of classical
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techniques like gamma correction (Shan et al., 2003),
logarithm transform (Savvides and Kumar, 2003),
adaptive histogram equalisation (Pizer et al., 1987),
region-based histogram equalisation (Shan et al.,
2003), and block-based histogram equalisation (Xie
and Lam, 2005) present limitations. They propose a
Discrete Cosine Transform in the logarithm domain
(Chen et al., 2006). Faraji and Qi (2016) suggest
other solutions based on logarithmic fractal dimension.
Hussain Shah et al. (2015) claim that: “Firstly, textural
values are changed during illumination normalisation
due to increase in the contrast that changes the
original pixels of [images]. Secondly, it minimises
the distance between inter-classes which increases the
false acceptance rates”. Unsharp masking algorithm
(Deng, 2011) or retinex type of algorithms (Meylan
and Susstrunk, 2006) do not take into account
the enhancement of noise. Consequently, the usual
approach which consists of a pre-processing to
normalise the illumination, significantly increases the
difficulty to perform the second step dedicated to the
recognition of a pattern. Moreover, the pre-processing
is rarely based on a rigorous modelling of the cause
of the lighting variations. We address this issue by
proposing metric tools which are efficient in presence
of lighting variations, without any pre-processing.
Those metrics are especially robust to variations
between low-contrast and high-contrast images. We
start from a little-known metric defined for binary



shapes (Asplund, 1960; Griinbaum, 1963), namely
the Asplund metric. It consists of a double-sided
probing of one of the shapes by the other. This
binary metric has the outstanding property of being
insensitive to object magnification (Jourlin et al.,
2014). Our motivation has been to extend this property
to Asplund-like metrics dedicated to grey level images.
Such extensions of the binary Asplund metric to
the functional case require the use of homothetic
images or functions which are insensitive to lighting
variations. Such a concept is mathematically well
defined and physically justified in the Logarithmic
Image Processing (LIP) framework (Jourlin and Pinoli,
2001; Jourlin, 2016). Two extensions will be studied:
1) the LIP-multiplicative Asplund metric based on the
LIP-multiplication operation of an image by a real
number and ii) the LIP-additive metric based on the
LIP-addition operation of an image by a constant.
A famous optical law, the Transmittance Law, is
at the basis of both LIP-operations (Jourlin, 2016,
chap. 1). They give to the functional Asplund metrics
a strong physical property: a very low sensitivity
to lighting variations, especially for under-lighted
images. The LIP-multiplicative Asplund metric is
thereby theoretically insensitive to variations of the
object absorption (or opacity). The LIP-additive metric
is defined to be insensitive to variations of source
intensity (or exposure-time). For pattern matching
purpose, a map of distances is computed between a
template and an image. The closest image patterns
to the template correspond to the minimal values of
the map. The patterns are then detected by finding
the map minima. In this paper, we will demonstrate
that the maps of distances are related to the well-
established framework of Mathematical Morphology
(MM) (Matheron, 1967; Serra, 1982; Heijmans,
1994; Najman and Talbot, 2013). This will facilitate
their programming as numerous image analysis
software contain these operations. Importantly, for
the Asplund metrics, there is no empirical pre-
processing normalising the image intensity. Moreover,
the consistency of the LIP model with Human Vision
(Brailean et al., 1991) allows the Asplund metrics to
perform pattern matching as a human eye would do.
The link between these metrics and the LIP model
opens the way to numerous applications with low-
lighting (Jourlin, 2016).

In this paper, our aim is to present a complete
framework of pattern matching robust to lighting
variations between low-contrast and high-contrast
images. In detail, our contribution is two-fold.
(1) Firstly, we extend the preliminary works defining
the functional metrics and their corresponding maps
of distances between a template and an image (Jourlin
et al., 2012; 2014; Jourlin, 2016; Noyel and Jourlin,
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2017a;b; Noyel, 2019a). Beyond the prior work, we
add theoretical work at two stages. a) We better define
the robust to noise version of the metrics. b) We
demonstrate the link between the maps of distances
and the MM operations of dilation and erosion (Serra,
1982). An expression will be given between each map
of distances and those MM operations. (2) The second
part of our contribution is to perform an extensive
experimental validation of the metrics on simulated
and on real images. We show that the Asplund metrics
are efficient for pattern recognition in images captured
with different lightings. This is especially the case for
the imaging of moving objects, where the motion blur
is avoided by shortening the camera exposure-time
with the side effect of darkening the images (Fig. 11).

RELATED WORKS AND NOVELTY

RELATED WORKS

Pattern matching methods efficient under variable
lighting conditions are seldom studied in the literature.
This explains the few references closely related to our
work. Nevertheless, we can cite two papers of Barat
et al. (2003; 2010). The first one proposes the concept
of probing in order to replace one of the following
methods. (i) The morphological approach proposed by
Banon and Faria (1997). (ii) The extension of the “hit-
or-miss” transform (Serra, 1982) to grey-level images
introduced by Khosravi and Schafer (1996). (iii) The
approach inspired by the computation of Hausdorff
distance of Odone et al. (2001). (iv) The “multi-scale
tree matching” based on boundary segments presented
by Cantoni et al. (1998). In the second paper, Barat
et al. introduce the double-sided probing of a grey level
function f, where a pair of probes locally surrounds
the representative surface of f. Such a technique
detects the possible locations of the searched pattern.
However, the probes are arbitrarily chosen and simply
translated along the grey scale to remain in contact
with the function f. These translations, which darken
(or brighten) the probes, seem to take into account the
lighting variations of the image. However, as they are
not physically founded, they do not correctly model
any of such variations.

NOVELTY OF THE
ASPLUND METRICS

The novelty of the functional Asplund metrics is
to be theoretically insensitive to lighting variations,
with a physical origin. Unlike the related works, the
functional Asplund metrics use the LIP-multiplicative
and LIP-additive laws to compare a given template to
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a studied grey level function f. Due to the LIP-laws,
the template generates itself the pair of probes suited
to the values of the function f. The arbitrary choice
of the probes made by Barat ef al. (2010) is therefore
avoided in our approach.

THEORETICAL BACKGROUND:
FROM A METRIC FOR BINARY
SHAPES TO A METRIC FOR
GREY LEVEL IMAGES

The Asplund metric originally defined for binary
shapes (Asplund, 1960; Griinbaum, 1963), has been
extended to grey-level images in the LIP-framework
by Jourlin et al. (2012; 2014). In this section, we give
background notions about the binary Asplund metric,
the LIP model, the Functional Asplund metrics and
MM.

ASPLUND METRIC FOR BINARY
SHAPES

In the initial definition of the Asplund metric for
a pair (A,B) of binary shapes, one shape, e.g. B,
is chosen to perform the double-sided probing of A
by means of two homothetic shapes of B. Two real
numbers are computed: the smallest number Ay such
that AgB contains A and the greatest number (o such
that A contains poB. The Asplund distance dg,,(A,B)
between A and B is then defined according to:

dasp(AaB) =In (A'O/.UO) (1)

Remark 1. This implies that d,s, remains unchanged
when one shape is magnified or reduced by any ratio
k.

Fig. 1 illustrates the binary Asplund metric where
a shape A is probed on its both sides by a reference
shape B.

Fig. 1. Asplund metric for binary shapes. The shape A
is probed on both sides by the reference shape B using
its two homothetic shapes AgB and LyB.

The property of insensitivity to object
magnification of the binary Asplund metric can be
extended to the functional case, where the functional
Asplund metric are insensitive to lighting variations.
For this purpose, the LIP model is necessary.
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LOGARITHMIC IMAGE PROCESSING

The Logarithmic Image Processing (LIP) model
was introduced by Jourlin and Pinoli (1988; 2001). A
grey-level image f is defined on a domain D C R" and
takes its values in the grey scale T = [0,M[ C R. f
is an element of the set J = TP, Contrary to common
usage, the grey scale extremity O corresponds to the
maximal possible intensity observed by the sensor
(white), i.e. when no obstacle is located between the
source and the sensor. The other extremity of the scale,
M, corresponds to the limit case where no element of
the source is transmitted (black). For 8-bit digitised
images, M is equal to 256. Now the two LIP operations
on images can be defined: the addition of two images
f A g and the scalar multiplication A A f of an image
by a real number A. Both operations derive from
the well-known Transmittance Law (Jourlin, 2016,
chap. 1): Tyag = Ty X T,. The transmittance T (x)
of a grey level image f at a point x of D is the
ratio of the out-coming flux at x by the incoming
one. The incoming flux corresponds to the source
intensity. From a mathematical point of view, the
transmittance Ty (x) represents the probability, for a
particle of the source arriving in x to be seen by the
sensor. The Transmittance Law Typ, means therefore
that the probability of a particle to pass through the
addition of two obstacles is nothing but the product
of the probabilities to pass through each of them. The
transmittance Ty (x) is related to the grey level f(x)
by the equation Ty(x) = 1 — f(x)/M. By replacing the
transmittances Ty and T, by their expressions in the
one of Tra,, the LIP-addition of two images f A g is
obtained

fhg=[f+g—fg/M. 2

Considering that the addition f A f may be written
as 2 A f according to Eq. 2, the multiplication of an
image f by a real number A is then expressed as:
AAF=M—-M(1—-f/M)". 3)

Remark 2. The opposite function Af of f is easily
obtained thanks to the equality f A (Af) =0, as well

as the difference between two grey level functions f
and g:

Af=(=N/0=f/M),
fAg=(f—g)/(1—g/M).
Let us note that Af is not an image (as it takes

negative values) and f A g is an image if and only if
f=g

“)
&)

The LIP framework possesses the fundamental
properties that are listed hereinafter.



Property 1 (The LIP framework is not limited
to images in transmission). As the LIP model is
consistent with Human Vision (Brailean et al., 1991),
the LIP operators are also valid for images acquired
in reflected light. They simulate the interpretation of
images by a human eye.

Property 2 (Strong physical properties). For images
acquired in transmission, the LIP-addition (or
subtraction) of a constant c to (or from) an image
f consists of adding (or subtracting) a uniform half-
transparent object of grey level ¢, which results in a
darkening (or lightening) of f. Such operations are
useful to correct illuminations variations. The images
acquired in transmitted or reflected light have both
following properties.

— The addition (or subtraction) of a constant c to
(or from) f simulates the decrease (or increase) of the
acquisition exposure-time (Carre and Jourlin, 2014,
Deshayes et al., 2015). If the values of f A ¢ become
strictly negative, they behave as light intensifiers
(Jourlin, 2016, chap. 4).

— The scalar multiplication A A f of f by a
positive real number A signifies that the thickness (or
the absorption) of the half-transparent object which
generates f is LIP-multiplied by A. The image is
darkened if A > 1 or lightened if A € [0, 1].

Property 3 (Strong mathematical properties). Let
Fyr = |—o0, M[P be the space of functions defined on
D with values in | — oo, M[. (Fpr, A, A) is a real vector
space and the space of images (J,A,A) represents
its positive cone (Jourlin and Pinoli, 2001; Jourlin,
2016).

In Fig. 2, several half-transparent sheets are
stacked upon each other between a light source and a
camera (Mayet et al., 1996; Jourlin, 2016). The camera
acquires an image of the light source through the
sheets. The perceived intensity f(x) by the camera, at a
point x, is plotted as a function of the number of sheets.
The inverted grey scale is used for the intensity axis.
When there is no obstacle, the intensity is O (white).
With the number of stacked sheets, it increases in a
logarithmic way and reaches a maximum M (black),
when no light is perceived trough the sheets. The non-
linearity of the perceived intensity is taken into account
by the LIP model. Such a model will be useful to define
functional Asplund metrics with strong properties.

Remark 3. There exists a symmetric version of the
LIP, namely the Symmetric LIP (Navarro et al., 2013).
However, this model is not physically justified albeit it
is interesting from a mathematical point of view for its
symmetry. It allows e.g. to propose a LIP version of the
Laplacian operator or to create Logarithmic Wavelets
(Navarro et al., 2014).
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Fig. 2. A light source passes through several half-
transparent sheets which are stacked. The perceived
intensity f(x) by the camera is plotted as a function
of the sheet numbers using the inverted grey scale.

DEFINITION OF FUNCTIONAL ASPLUND
METRICS

In this section, we will remind the LIP-
multiplicative Asplund metric. We will then clarify the
definition and properties of the LIP-additive metric.

LIP-multiplicative Asplund metric

Here, we will give the definition of the metric,
one of its properties and a rigorous definition. Those
were introduced by Jourlin et al. (2012; 2014); Noyel
and Jourlin (2017a). Let T* = ]0, M| be the grey-level
axis without the zero value and J* = T*P the space of
images with strictly positive values.

Definition 1 (LIP-multiplicative Asplund metric).
Let f and g € J° be two grey level images. As for
binary shapes, we select a probing function, e.g. g, and
we define the two numbers: A = inf{a,f < aAg}
and @ = sup{a,a A g < f}. The LIP-multiplicative
Asplund metric dﬁp is defined by:

dis,(f.8) =In(A/). (6)

250

200

Grey levels

100

Fig. 3. Double-sided probing of a function f by a probe
g performed by the LIP-multiplicative Asplund metric.
U A g is the lower probe and A A g is the upper probe.

Fig. 3 illustrates the double-sided probing of image
f by a probe g. The lower probe u A g is in contact
with the lower side of the function f whereas the upper
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probe A A g is in contact with the upper side of f.
By comparison with the probe shape, the shapes of
the lower and upper probes are deformed by the LIP-
multiplication A . Such a deformation which depends
on the grey value of g, is characteristic of the following
metric property.

Property 4 (Invariance under LIP-multiplication of
a constant). The strongest advantage of the LIP-
multiplicative Asplund metric is to remain unchanged
when one image (e.g. f) is replaced by any homothetic
A f,Va e R dl (f,8) =di, (A f,g).

This latest equation demonstrates the insensitivity
of the metric da%p to illumination variations modelled
by the LIP-multiplicative law A, i.e. those which
correspond to an absorption change of the object.

Remark 4 (Mathematical appendix (Jourlin, 2016,
chap. 3)). Considering the previous property, it would
be more rigorous to explain the LIP-multiplicative
Asplund metric as follows.

a) An equivalence relation % is defined on the
space of grey level images. Two images f and g € J*
are said to be in relation if they satisfy: (f#g) < o >
0, f = aAg The previous relation % obviously
satisfies the properties of an equivalence relation
(reflexivity, symmetry and transitivity).

b) To each image f € J%, its equivalence class f*
is associated: f* = {g, g#f}.

c) A rigorous definition of the LIP-multiplicative
Asplund metric is then given into the space of
equivalence classes 3% by: V(f2,g%) € (1%)?,
sy (f2,8%) = dis, (f1,81)- dis,(f1,81) is the Asplund
distance between any elements f| and g of the

equivalence classes {2 and g*.

LIP-additive Asplund metric

As for the LIP-multiplicative metric, we will give
a definition of the LIP-additive Asplund metric, some
properties and a rigorous definition.

Definition 2 (LIP-additive Asplund metric). Let f
and g € Fy be two functions, we select a probing
function, e.g. g, and we define the two numbers: c; =
inf{c,f <cAg}andc, =sup{c,c Ag< f}, wherec
lies in the interval |—co,M[. The LIP-additive Asplund
metric dﬁp is defined according to:

s (f.8) =c1Lca. %
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Remark 5. By definition, the values of ¢y and c; lie in
the interval |—oo, M|, which implies that the probing
functions g A ¢y and g A ¢y are not always images.
However, ¢y is always greater than cp. Nevertheless,
the Asplund metric has the following property.

Proposition 1. d5},(f,g) lies in [0,M[ (Proof p. 68).

Property 5 (Invariance under LIP-addition of a
constant). The LIP-additive Asplund metric remains
unchanged when f € Fy (or g) is replaced by any
translated function f Ak, with k € |—oo, M.

Indeed, the constants ¢1 and ¢y become c¢1 Ak and
¢y Ak respectively. This implies that da%p (fAkg) =

s, (f,g) and thatV f Nk, ds,(f, f A k) = 0. Knowing
that the addition of a constant to a function is
equivalent to a variation of camera exposure-time
(Carre and Jourlin, 2014; Deshayes et al., 2015), we
have the fundamental result: the LIP-additive Asplund

metric is insensitive to exposure-time changing.

Remark 6 (Mathematical appendix). As for the LIP-
multiplicative Asplund metric a rigorous mathematical
definition is obtained by replacing each image f by
its equivalence class 2, which represents the set
of functions h such that h = f Ak, for a constant
k lying in ]—oo,M|. Nevertheless, if we keep the
notation f and g, there is no ambiguity. Indeed, for
a couple ( A, gA) of equivalence classes, we have

d, (f*,8%) = d5,(f1,81), where fi and g\ are

elements of the classes f* and g respectively.

FUNDAMENTAL  OPERATIONS
MATHEMATICAL MORPHOLOGY

As the definitions of the functional Asplund
metrics are based on extrema between functions, there
exists a natural link with MM as shown by Noyel and
Jourlin (2017a). MM (Matheron, 1967; Serra, 1982;
Heijmans and Ronse, 1990; Soille, 2004; Bouaynaya
and Schonfeld, 2008; Najman and Talbot, 2013; van de
Gronde and Roerdink, 2014) is defined in complete
lattices (Serra, 1982; Banon and Barrera, 1993). Let
us recall some important definitions.

IN

Definition 3 (Complete lattice). Given a set £ and
a partial order < on £, L is a complete lattice if
every subset 2" of £ has an infimum (a greatest lower
bound) and a supremum (a least upper bound).

The infimum and the supremum of 2~ will be
denoted by A\ 2" and \/ 2", respectively. Two elements
of the complete lattice .Z are important: the least
element O and the greatest element /. E.g. the
set of images from D to [0,M], T = [0,M]P, is a
complete lattice with the partial order relation <. The



least and greatest elements are the constant functions
fo and fjy whose values are equal to 0 and M,
respectively, for all the elements of D. The supremum
and infimum are defined by taking the pointwise
infimum and supremum, respectively. For 2~ C J, we
have (A7 27)(x) = Ao {f(x) : f € 2", x € D} and
(V3 2)(x) = V[O7M]{f(x) c f e Z, x € D}. Given

R = RU {0, +}, the set of functions R" is also
a complete lattice with the usual order <.

Definition 4 (Erosion, dilation (Banon and Barrera,
1993)). Given £ and & two complete lattices, a

mapping Y € ff s
—an erosion €: if VX C 4, WANZ)=A\y(Z);
—a dilation 6: ffVZ C A, y(NZ)=\Vy(Z).

As the definitions of these mappings apply even to the
empty subset of &1, we have: €(I) =1 and §(0) = O.

A structuring function b is a function defined on
the domain D, C D with its values in T =R, or in
T = [0,M]. In the case of a dilation or an erosion
of a function f by an additive structuring function b,
which is invariant under translation in the domain D,

the previously defined dilation & or erosion € can be

expressed in the same lattice (@D, <), or (J,<) (Serra,
1988; Heijmans and Ronse, 1990) by:

(&) =\ {flx—h)+bh)}

heDy,
= (feb)(x), (3)
(& () x) = A\ {f(x+h)—b(h)}
heDy,
= (feb)X). 9

The symbols @& and © represent the extension to
functions (Serra, 1982) of Minkowski operations
between sets (Serra, 1982). The term ‘“additive
structuring function” refers to a vertical translation in
the image space J (Heijmans and Ronse, 1990).

PATTERN ANALYSIS WITH THE
LIP-MULTIPLICATIVE ~ ASPLUND
METRIC

The LIP-multiplicative Asplund metric is of
utmost importance for pattern matching of objects
whose absorption (or opacity) is varying. For this
purpose, Jourlin et al. (2012) introduced a map of LIP-
multiplicative Asplund distances. Noyel and Jourlin
(2015) studied it and Noyel and Jourlin (2017a;b)
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established its link with MM through different
conference papers. In this section, we will recall its
definition, we will improve the definition of its robust
to noise version and we will clearly present the link
with MM.

Fig. 4. (a) Colour version of the butterfly image. In
its luminance image f, a white spot — surrounded by
the green curve — is selected as a probe function b. (b)
Zoom in on the colour version of the luminance probe
b. (c¢) Map of LIP-multiplicative Asplund distances
Aspb& f between the image [ and the probe b. Its
minimum is indicated by the white arrow. (d) Zoom
in on the map of Asplund distances of the image. The
white arrow points to its minimum.

MAP OF ASPLUND DISTANCES

Let T =[0,M[, T* = ]0,M| be grey-level axes and
J* = TP D € R” the space of strictly positive images.

Definition 5 (Map of LIP-multiplicative Asplund
distances (Jourlin et al., 2012)). Let f € J* be a
grey-level image and b € (T*)P> a probe. The map of
Asplund distances Aspb& I = (]R*)D is defined by:

Aspy f(x) = d55, (fipy () »D)- (10)

For each point x € D, the distance da%p (fiDy(x) D)
is computed in the neighbourhood Dp(x) centred in x
and the template b is acting like a structuring element.
fip,(x) is the restriction of f to Dp(x). Asp2f:D—R*
is the map of Asplund distances between the image f
and the probe b.

Fig. 4 illustrates the map of Asplund distances with
an image of a butterfly (Butterfly, 2010). The image is
coming from the Yahoo Flickr Creative Commons 100
Million Dataset (Thomee et al., 2016). The processing
is performed on its luminance image f which is in
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grey levels even if the images are displayed in colours.
In the luminance image f of the butterfly (Fig. 4a),
a white spot is selected to serve as a probe b (Fig.
4b). The map of Asplund distances As pb& f between the
image f and the probe b (Fig. 4c) presents a minimum
which corresponds to the probe we are looking for
(Fig. 4d). A map of Asplund distances allows us
therefore to find a reference pattern or probe within
an image. However, as images may present acquisition
noise, a robust to noise version of the metric is useful
for pattern matching.

A ROBUST TO NOISE VERSION

The Asplund metric is computed using extrema,
which makes it sensitive to noise. To overcome this
limitation, Jourlin et al. (2014) have proposed an
extension which removes from D the most penalising
points. This idea is related to the fopology of the
measure convergence (Bourbaki, 2007, chap. 4) in the
context of grey-level images. As the image is digitised,
the number of pixels lying in D is finite. The “measure”
of a subset of D is linked to the cardinal of this subset,
e.g. the percentage P of its elements related to the
domain D (or a region of interest R C D).

We are looking for a subset D' of D, such that i)
fip and gy are neighbours (for the Asplund metric)
and ii) the complementary set D\ D’ of D’ related to D
is small-sized as compared to D. This last condition is
written: P(D\D') = #(27})1)/) < p, where p represents an
acceptable percentage and #D the number of elements
in D. A neighbourhood of the image f € J can be
defined thanks to a small positive real number € as:

) ={g\3D' cD,ds,(fir.g) <€
and P(D\D') < p}.

IVP,dA ,S,p(

asp

(1D

The set D’ corresponds to the noise pixels
to be discarded. As these pixels are the closest
to the probe, they are selected by a function
y( Fo) : D — R characterising the (LIP-multiplicative)
contrast between the functions f and g and which is
defined by:

VxeD, y(%’g) (x)Ag(x)=f(x)

_In(1—f/M)
@10 = (1 g/1)

(x) is the real value by which each image value

(12)

A
)
f(x) is LIP-multiplied to be equal to the probe value

g(x). The expressions of the probes A A g and u A g
(Def. 1) can be written with the contrast function

}/é’g) as follows: A = inf{a,Vx, 7(%@)(36) <a} and
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u = sup{a,Vx,a < }/ } This explains that the

closest image values to the upper probe A A g, or
the lower probe U A g, correspond to the greatest,
or smallest, values of y(% o) respectively. Using this

property, new probes A’ A g , or u' A g, can be
defined on the domain D\ D’ obtained by discarding
a percentage (1 — p)/2 of the pixels with the greatest,
or smallest, contrast values }/ég) (x), respectively. The

restricted domain D\ D’ has thereby a cardinal equal
to a percentage p of the cardinal of D.

Definition 6 (LIP-multiplicative Asplund metric
with tolerance). Let (1 — p) be a percentage of points
of D to be discarded and D' the set of these discarded
points. The (LIP-multiplicative) Asplund metric with
tolerance between two grey-level images f and g € J is
defined by:

dasp p(f.8) =In(A' /1), (13)
The factors A’ ana’ u  are equal to
A" = inf{a,Vx € D, }/(le\D/ g‘D\D/)(x) < o} and
p = sup{a,Vx € D,a < 7( oo ) ( )b A

percentage (1 — p)/2 of the points x € D with
the greatest, respectively lowest, contrast values
A (x>_1n(1*f(X)/M)
Nre\W) =

Tn(1=g00/31) 47€ discarded.

Using Eq. 12 and 3, the contrast function y(% 2) is

proportional to the contrast function }/ﬁ abg) between
the image f and the LIP-multiplied probe o A g:
y(?a&g)( x) = (1/a)y, fg)( x), with @ > 0. This leads
to the following property which is demonstrated in the
supplementary materials.

6. The metric d2.  is invariant under LIP-

Property asp.p

multiplication by a scalar.
Remark 7. A map of Asplund distances with tolerance
can be defined as in definition 5: Asp,%p f(x)

dr%mv (f|Db (x) b).

Fig. Sa illustrates the ability of the Asplund metric
with tolerance to discard the extremal values f(x;)
and f(x,) associated to noise. In Fig. 5b, the probe
g is chosen as a plane and the image f is obtained
by adding a noise to the probe with a spatial density
of p = 8%. The plane of the probe g is distorted
by the LIP-multiplication used for the upper probe
A A g and for the lower probe u A g The Asplund
distance which is initially equal to dg), & (f,g) =3.75
decreases to da%p »(f,g) = 0.79, with a tolerance of
p = 97%. Experiments have shown that with p = 90%
(< (1—p)), the Asplund distance is equal to zero.
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Fig. 5. lllustration of the LIP-multiplicative Asplund
metric where g is used to probe f. AAg (respectively
A Ag) is the upper probe and HAg (resp wAg) is
the lower probe of the Asplund metric d.; p( f.8) (resp.
of the Asplund metric with a tolerance p, dasp p(f, ).
(a) Without tolerance, the Asplund distance is equal
to dﬁp(f, g) = 0.42 whereas with a tolerance p =
80% it decreases to dmpp(f, ) = 0.24. (b) The image
f is obtained by adding to the probe g a Gaussian
white noise of mean 0, variance 5 and spatial density
p = 8%.

LINK WITH MATHEMATICAL MORPHO-

LOGY

We first present the maps of distances with
neighbourhood operations. We then establish the link
with MM in the specific case of a flat structuring

element and in the general case of a structuring
function.

General expression of the map of Asplund
distances with neighbourhood operations

From Eq. 6, for each x € D, there
is  di,(fip,o-b) = In(Af(x)/upf(x))  with
Aof(x) = inf{a, fip,o) <@Ab} and p,f(x) =

sup{a, alAb< Jipy(x } These expressions show
that the map of Asplund dlstances consists of a double-
sided probing, at each point x, by the least upper bound
A(x) A b and by the greatest lower bound pt(x) Ab. As
Apf(x) and w, f(x) exist for all x € D, the following
maps can be defined (Noyel and Jourlin, 2017a).

Definition 7 (LIP-multiplicative maps of the least
upper and of the greatest lower bounds (Noyel and
Jourlin, 2017a)). Given R = [0, o], let f € J be an
image and b € (T*)P» a probe. Their map of the least

upper bounds (mlub) Ay : I — (@JF)D and their map of

the greatest lower bounds (mglb) w1 J — (@JF)D are
defined by:
Mof(0) = inf {of(e ) < a b)), (14)
ney
W (x) = sup {er, @ Ab(R) < f(x+h)}.  (15)

heDy,

60

NOYEL G et al.: Functional Asplund metrics

Let us define f =1In (1 — f/M), f € J and introduce
the general expression of the mlub and of the mglb.
Propositions 2 to 4 are demonstrated in (Noyel and
Jourlin, 2017a) and in the supplementary materials.
Proposition 5 is demonstrated in the Appendix.

Proposition 2. The mlub Aj, and mglb W, are equal to:

=\ {fx+
= N {Flx+

Apf(x)
o f (x)

(16)
7)

h hEDb}
h /’lEDb}

Corollary 1. Given f € T, f >0, the map of LIP-
multiplicative Asplund distances becomes:
M)

Asp2 f=1In <ubf

(18)

Particular
element

case of a flat structuring

In the case of a flat structuring element, the
expressions of the different maps can be simplified as
follows.

Proposition 3. Let b = by € (T*)? be a flat
structuring element (Vx € Dy, b(x) = bg). The mlub
Avy» the mglb Ly, and the map of Asplund distances
Aspb&O are equal to:

Apof = (1/bo)In[1— (85, f)/M], (19)
Hp, f = (1/bo)In[1 — (ep, f)/M], (20)
In[1— (65 f)/M
Aspb&of =1In !ln[[l — E;;:;;;M” , where f > 0.
(21)

Dy, = {—h,h € Dy} is the reflected (or transposed)
domain of the structuring element.

This result shows that the map of Asplund
distances is a combination of logarithms, an erosion &,
and a dilation §, of the image f by the flat structuring
element . As numerous image processing libraries
include erosion and dilation operations, the program
implementation becomes easier.
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General case: a structuring function

Proposition 4. The mlub A, and the mglb L, are a
dilation and an erosion, respectively, between the two

complete lattices A1 = (3,<) and %5 = ((R P2,

Let us determine the expressions of this dilation
and this erosion using MM with multiplicative
structuring functions introduced by Heijmans and
Ronse (1990); Heijmans (1994).

Definition 8 (Erosion and dilation with a
multiplicative structuring function (Heijmans and

Ronse, 1990; Hel_]mans, 1994)). Given a function f €
+

(R, and b € (R )Db a multiplicative structuring
function:
V {f(x=h).b(h)} = (fbb)(x) (22)
heDy,
is a dilation and
N\ AfG+m)/b(h)} = (FEb)(x)  (23)

heDy,

is an erosion, with the convention that f(x— h).b(h) =
0 when f(x—h) =0 or b(h) =0 and that f(x+
h)/b(h) = 4o when f(x+ h) = +e or b(h) =
0. The symbols & and & represent the extension
to multiplicative structuring functions of Minkowski
operations between sets (Serra, 1982).

There exists a relation between the multiplicative
erosion or dilation and the additive operations of
section 3.4 (Heijmans and Ronse, 1990; Heijmans,
1994):

fob=exp(Inf®Inb),
fEb=exp(InfSlnb).

(24)
(25)

The next proposition gives the morphological
expressions of the different maps.

Proposition 5. Let b € TP and f € 7, the expressions
of the mlub Ay, which is a dilation, and of the mglb Uy,
which is an erosion, are:

N

D(=1/b) =exp(f & (b)),

Apf = (=
upf =(—f)o(=b) =exp(fob).

(26)
27

Eis the reflected structuring function defined by Vx €
Dy, b(x) = b(—x) (Soille, 2004) and f is the function

f=1In(1—f/M), with f € [—o0,0]. f= In(—f)
In(—In(1— f/M)) is a transform of f.
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The map of Asplund distances is the difference
between a dilation and an erosion whose expression
is:

Asppf = |f@(-b)| - [fob] =8 ;f—gf. @8

We notice that the map of LIP-multiplicative
Asplund distances is similar to the norm of the
morphological gradient p; also named Beucher’s
gradient (Serra, 1988; Soille, 2004). It is the difference
between a dilation and an erosion of the transformed
image f by a structuring function b: p;, f= 5 f—
&, f. This similarity shows that the map of Asplund
distances acts as an operator of derivation.

Remark 8. The map of Asplund distances with
tolerance Aspb can be computed by replacing the
dilation and erosion by rank-filters (Serra, 1988).

Fig. 6a illustrates the double-sided probing of an
image f by a probe b using the LIP-multiplicative
law A which modifies the amplitude of the upper
probes A, f(x) A b and of the lower probes p, f(x) A b
Both peaks have a different amplitude caused by a
lighting drift created with the LIP-multiplicative law.
In Fig. 6b, when the probe b is similar to a pattern
in f (according to the Asplund distance), the map
of Asplund distances of f, Aspb& f, presents a local
minimum. Here, both peaks are located at the deepest
minima of the map of f by the probe b, Aspb f-
This result shows that the map of LIP-multiplicative
Asplund distances is insensitive to a lighting drift
corresponding to a variation of absorption (or opacity)
of the object.

7N ,oN /\)Lb(f)
9 )/ \\J’ N :
2] ‘ :"\\
<3 2L P AN
) ST )
5 y P . R
36 _ M(/ )
5
4 0

(a) (b)

Fig. 6. (a) The image f is probed on both sides
by the probe b (in red colour) using the LIP-
multiplicative law A. The double-probing is depicted
at two locations by the red dashed curves. (b) Ay, f and
Upf are the mlub and mglb of f, respectively. Aspb f
is the map of Asplund distances between f and b.



PATTERN ANALYSIS WITH THE
LIP-ADDITIVE ASPLUND-LIKE
METRIC

The LIP-additive Asplund metric is useful for
images acquired with a small source intensity or
a short exposure-time (Jourlin, 2016, chap. 3). In
this section, we will introduce: a map of LIP-
additive Asplund distances, a robust to noise version
of the metric and the link between the map of
distances and MM. Due to the important similarity
with the LIP-multiplicative case (see previous section),
we will only point out the new equations and
results. We will consider the set of functions Fy =
TP (or Ty = T~) with values in T = |—oco, M|
(or T = [—oo0, M)).

MAP OF ASPLUND DISTANCES

Definition 9 (Map of LIP-additive Asplund
distances). Let f € Ty be a function and b € TP a

probe. The map of Asplund distances is the mapping
AspbA : Ty — J defined by:

AspbAf(x) = dﬁp (f\Db(x) 7b) (29)

The LIP addition A makes the map of distances
robust to contrast variations due to exposure-time
changes.

A ROBUST TO NOISE VERSION

In order to overcome the noise sensitivity of
Asplund metric, a neighbourhood Npya . , (f) of the
function f is defined by replacing in Eq. 11 the
LIP-multiplicative Asplund metric dﬁp by the LIP-
additive one d% . The noise pixels which are the
closest to the probe are selected by using a function
}/(%g) : D — ]—oo,M| which characterises the (LIP-

additive) contrast between the functions f and g:
Vx €D, ¥y () Ag(x) = f(x) & 1 = fAg. (30)

}/ég)(x) € ]—co,M[ is the real value to be LIP-
added to each function value f(x) so that it becomes
equal to the probe value g(x). The expressions
of the probes c¢; A g and ¢y A g (Def. 2) are
equal to: ¢} = inf{c,Vx,}/(?g)(x) <c} and ¢ =
sup{c,Vx,c < }/@,g)(x)}. These probes are used to
introduce the following definition.
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Definition 10 (LIP-additive Asplund metric with
tolerance). Let (1 — p) be a percentage of points of
D to be discarded and D' the set of these discarded
points. The LIP-additive Asplund metric with tolerance
between two functions [ and g € Fy is defined by:

dﬁp,p(fvé’) = C/l AC/Z' (3D
The constants ¢, and ¢ are equal to:
i = inf{c,vx € D,}/(l&ﬁD\Dhg‘D\Dl)(x) < ¢} and
¢y, = sup{c,Vx € D,c < )/(%D\Dhg‘D\Dl)(x)}. A

percentage (1 — p)/2 of the points x € D with
the greatest, respectively lowest contrast values
}/@_g) (x) = f(x) A g(x) are discarded.

From Eq. 30 and 5, the contrast function y@_g) is

related to the contrast function y(?c Ag) between f and
the probe ¢ A g, where Vx € D, c(x) = c,c € |—o0, M|,
by the following equation: }/(&fc Ag) (x) = }/ég) (x) Ac.
This leads to the following property demonstrated in
the supplementary materials.

Property 7. The metric dﬁp’ p

LIP-addition of a constant.

is invariant under the

Remark 9. A map of Asplund distances with
tolerance can be introduced as in definition 9:

Aspb&,pf(x) = dﬁp,p(f\Db(x)vb)-

150

cl’Ag
@ c'Ag
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2 ! -
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Fig. 7. lllustration of the LIP-additive Asplund metric
for functions where g is used to probe f. ciAg
(respectively c¢|Ag) is the upper probe and cyAg
(resp. chAg) is the lower probe of the Asplund metric
da%p (f,g) (resp. of the Asplund metric with a tolerance
D, dﬁp,p (f,8))- The function f is obtained by adding
a Gaussian white noise to the planar probe g (mean 0,
variance 5, spatial density p = 8%).

Fig. 7 illustrates the LIP-additive Asplund metric
robust to noise da%m]( f,g). The probe g is chosen
as a plane and the function f is obtained by adding
a noise to the probe g with a spatial density of
p = 8%. We notice that the upper probe c; A g and
the lower probe ¢, A g may take negative values.
After the LIP-addition, the planar surface of the

probe g is still a plane, with a different orientation.
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The Asplund distance which is initially equal to
d%,(f,8) = 116 decreases to di;, ,(f,g) =40, with a
tolerance p = 97%. Experiments have shown that with
p=90% (< (1—p)), the Asplund distance is equal to

Z€ro.

LINK WITH MATHEMATICAL MORPHO-
LOGY

General expression for the map of
Asplund distances with operations on
neighbourhoods

In order to establish the link with MM,
we will express the map of Asplund distances
with neighbourhood operations. From Eq. 7,
for each x € D, the map expression becomes
dss,(fipy-b) = c1,f(x) A ¢, f(x),  where
c1,f(x) = inf{c,ﬁDb(x) <cAb} and o, f(x) =
sup{c,cAb < fipy () } This leads to the following
definition.

Definition 11 (LIP-additive maps of the least upper
and of the greatest lower bounds). Let f € Ty be a
function and b € TP» a probe. Their map of the least
upper bounds (mlub) cy,, : Fy — Ty and their map of
the greatest lower bounds (mglb) c;, : Fy — Fay are
defined by:

e, f(x) = inf {e.f(x+ ) ScAb(n)}, (D)
ney,

2, f(x) = sup {c,c Ab(h) < f(x+h)}. (33)
hEDb

The following propositions, 6 to 9, are

demonstrated in the Appendix. The general

expressions of the mlub, mglb and map of distances
will be given hereinafter.

Proposition 6. The mlub cy, and the mglb c;, are

equal to
e, f(x) =\ {f(x+h)Ab(h),he Dy},  (34)
2, f(x) = N{f(x+h)Ab(h),h€Dy}.  (35)

Corollary 2. The map of Asplund distances between
the function f and the probe b is equal to

Aspb&f:clbféczbf. (36)

63

Particular
element

case of a flat structuring

Proposition 7. Let b = by € T be a flat structuring
element (Vx € Dy, b(x) = bg). The mlub Cly,» mglb €2,

and map of Asplund distances Aspb&O are equal to:

c1y, [ = 8p, f Bbo, (37)
¢, = €p,f Abo, (33)
Aspif = 8p,f Dep,f. (39)

With a flat probe b, the map of Asplund distances
is a LIP difference between a dilation 5 and an
erosion gp, of the function f by the domain D), of the
structuring element b. It is similar to a morphological
gradient with a LIP difference.

General case of a structuring function

Proposition 8. The mlub cy, (resp. mglb cy,) is
a dilation (resp. an erosion) in the same lattice
Dipl :gz = (?M7§)

Remark 10. In Eq. 36, one notices that the map
of LIP-additive Asplund distances is a LIP-difference
between a dilation and an erosion, which corresponds
to the LIP version of the morphological gradient. This
similarity shows that the map of Asplund distances acts
as an operator of derivation.

Let us establish the relation of the dilation ¢y,
or the erosion ¢y, with the dilation d, (Eq. 8) or
the erosion &, (Eq. 9), respectively. For this purpose,
a bijective mapping (i.e. an isomorphism) is needed

between the lattice @D of O,f, or &,f, and the lattice
Fmof ¢y, f, orcy, f. Jourlin and Pinoli (1995); Navarro

et al. (2013) defined this isomorphism & : Ty — R
and its inverse & ! by:
S(f)=—MIn(1-f/M),
E1(f) =M1 —exp(—f/M)).

(40)
(41)

Remark 11. As E=! and & are increasing bijections,
they distribute over infima, as well as over suprema.

Proposition 9. Given two functions f,g € Ty, & has
the property to transform the LIP-difference, A, into

the usual difference, —, E(f A g) =E(f) — &(g).

The dilation c¢;, (Eq. 34) and the erosion c;,
(Eq. 35) can therefore be expressed as:



e, f(x) =& 1o &(\/ {flx—h)Ab(h)}
heDy,
VAN =R =EB) (Y]
heDy,
:M(l _ *thﬁb{*f(x*h)Jrz(h)})’ (42)
c2, f () A G x+h) =EB) (M)}
heD,
_ M(l e /\heDb{*f(Hh))*[*i’(hﬂ})’ (43)
where & (f) = —M .

Proposition 10. Let b € TP be a structuring function
and f € Fy be a function. The expressions of their
mlub cy,, which is a dilation, and of their mglb c;,,
which is an erosion, are equal to:

e, f =& E() @ (=6 (D))]
— M(1 — e eCD)y, (44)
o, f =& E(f) O & b))
=M(1— *[f@b]) (45)
f e RD is a function defined by f = — f =
—In(1—f/M) =[E(f)]/M.

Their map of Asplund distances is related to the
difference between a dilation and an erosion (with an
additive structuring function) by:

Aspy f =& MIEN @ (=E@)]~[E(f) SEB)]] (46)
=M(1—exp(—[(f@& (b))~ (feb)])
M(1—exp(~[8 ;f —&f])).

47

Remark 12. By replacing the dilation and erosion by
rank-filters (Serra, 1988) one can compute the map of
Asplund distances with a tolerance Aspﬁp.

Fig. 8a illustrates the double-sided probing of an
image f by a probe (or structuring function) b. The
amplitudes of both peaks are related by a LIP-addition
of a constant. In Fig. 8b, the two deepest minima of the
map of distances of f, Asb f correspond to the location
of both peaks similar to the probe b. This illustrates
the insensitivity of the map of LIP-additive Asplund
distances to a variation of light intensity or exposure-
time.

64

NOYEL G et al.: Functional Asplund metrics

Function values

X X

(@) (b)

Fig. 8. (a) The function f is probed on both sides
(up and down) by the probe b (in red) using the LIP-
additive law A. The double-probing is depicted at two
locations by the red dashed curves. (b) cy, f and CZb f

are the mlub and the mglb of f, respectively. Aspb fis
the map of Asplund distances between f and b.

EXPERIMENTS AND RESULTS

In this section, we will discuss the implementation
of the maps of distances and we will illustrate them
with simulated and real cases of image acquisition.

IMPLEMENTATION

The maps of LIP-multiplicative and LIP-additive
Asplund distances of the image f, Aspb f and Aspb f,
respectively, were both programmed in MATLAB®
using their direct (Eq. 10, 29) and morphological
(Eq. 28, 47) expressions. The same programming
was done for the map of Asplund distances with
tolerance Aspb%p f and Aspb%p f of f. Due to the
existence in numerous image analysis software (e.g.
MATLAB®, Python scikit-images) of fast versions of
the morphological operations @& and © and of rank
filters, the morphological implementation is easier and
faster than the direct one. In table 1, the duration of
the morphological and of the direct implementations
(with parallelisation) of the maps of Asplund distances
without and with tolerance are compared using the
example of Fig. 9. The image size is of 1224 x 918
pixels and the probe contains 285 pixels (Fig. 9d).
The morphological implementation is always faster
than the direct one, with a gain factor lying between
5.9 and 11 (processor Intel® Core™ i7 CPU 4702HQ,
2.20 GHz, 4 cores, 8 threads with 16 Gb RAM).
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Table 1. Comparison between the durations of the
morphological and direct implementations for the
LIP-multiplicative maps of Asplund distances, Asph&

and Aspb%%% , and the LIP-additive maps, Aspb& and
Aspb%%% . The example of Fig. 9 is used. Last raw:

gain factor between the direct and the morphological
implementations.

Aspb&f Aspl%%%f Aspb&f Aspb%%%f
Morpho. 14s 4.2 14s 43s
Direct 16.1s 24.6s 154 s 255
Gain factor | 10.9 5.9 11.0 5.9
SIMULATED CASES
We evaluate the LIP-multiplicative and LIP-

additive maps to detect balls in a bright image and
in two darkened versions obtained by simulation
(Fig. 9). The bright image is acquired in colour with
“normal” contrasts — automatically selected by the
camera (Fig. 9a) — and converted to a luminance image
in grey-level, denoted f. A first darkened version fy o
is obtained by the LIP-multiplication of f by a scalar A
(Fig. 9b). A second darkened version fg; 4 is obtained
by the LIP-addition of a constant k (Fig. 9¢). Due to the
light reflection at the surface of the balls and of other
confounding objects, detecting the balls is a difficult
task in these images. For this purpose, we used a probe
b made of a ring surrounding a cylinder (Fig. 9d). The
ring has an external radius of 15 pixels, a width of 3
pixels, a grey-level value of 18 and the disk has a radius
of 2 pixels and a grey-level value of 190.

Remark 13. As the grey-scale is complemented
in the LIP model, the LIP-multiplicative map
Asb%w f€ is computed using the image complement
fC=M—fe)0,M[P, and the probe complement I~
However, the image fa p € ]—o0,M [D, darkened by the
LIP-addition of a constant, presents negative values
and its complement fg , € ]0, +oo[? is outside of the

dynamic range allowed for the map [fOO,M]D. For this
reason, the darkened image fi a is not complemented.

In the image f (Fig. 9a) and in its darkened version
fax,» (Fig. 9b) obtained by LIP-multiplication, all the
balls are detected by a thresholding of their map of
Asplund distances Aspb%p f¢ (Fig. 9c). The map is
the same for both images f and fg » because of
its invariance under LIP-multiplication by a scalar.
Similar results are obtained for the image f (Fig. 9a),
its darkened version fg; » by LIP-addition (Fig. 9e)

and their map of distances AspbAp f (Fig. 9f) which is
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invariant under LIP-addition of a constant. The same
parameters of the probe were used for all the images
f> fak,a and fg a. These results show that the maps
of Asplund distances are able to detect targets under
different illumination conditions modelled by the LIP-
multiplication A or the LIP-addition A.

(@

Fig. 9. (a) Colour version of the luminance image
f and (b) its darkened version fgp = (AAf)C
obtained by the LIP-multiplication (A = 5) of the
complemented image luminance f€. The balls are
detected by a thresholding of (c) the map of LIP-
multiplicative Asplund distances of f© with a tolerance
p=95%, Aspb%pfc. (d) Probe b. (e) Darkened version
farx,sn = kAf of the luminance image f obtained by
the LIP-addition of k = A100 = —164.10. The balls
are segmented by a thresholding of (f) the map of
LIP-additive Asplund distances of f with a tolerance
p =94%, Asp},f.

REAL CASES

The maps of LIP-additive and LIP-multiplicative
Asplund distances are then illustrated on real images.
For a better visual interpretation, the results are
presented with colour images even if the processing is
made using their luminance.

LIP-additive metric: images acquired with
a variable exposure-time

In Fig. 10, the same scene is captured with
three different camera exposure-times (or shutter
speeds). This gives three images, each with a
different brightness: a bright one f (Fig. 10a), a dark
intermediate one fg, (Fig. 10b) and a dark one fy,



(Fig. 10c). The scene is composed of bright balls on a
multicolour background with other smaller balls acting
as confounding objects. In order to make the ball
detection more arduous, the camera is not exactly in
the same position to capture the images. Moreover,
the balls are of different colours, with different
backgrounds and present several reflections. A disk
of diameter 55 pixels is manually selected inside a
ball of the bright image f (Fig. 10a) in order to serve
as a probe function . A map of Asplund distances
is computed between the complement of each of the
three images and the same probe b using the same
tolerance parameter p = 70%. In the three distance
maps of images Asppe f¢ (Fig. 10d), Aspfz  f5.
(Fig. 10e) and Aspb%p fjkz (Fig. 10f), one can notice
that the amplitudes are similar. This is caused by the
low sensitivity of the LIP-additive Asplund metric to
lighting variations due to different exposure-times. In
order to extract the location of the large balls, the maps
of the dark intermediate image Aspﬁ’ » fc?kl and of the

dark image Aspb% ok, are segmented using the same

technique — a threshold (at the 37" percentile) and a
reconstruction of the regional h-minima (Soille, 2004)
— followed by a morphological post-processing (see
remark in supplementary materials). Such a technique
allows to detect all the large balls in both dark images
Sar, (Fig. 10b) and fu, (Fig. 10c), using the same
probe b extracted in the bright image f (Fig. 10a). This
illustrates the robustness of the map of LIP-additive
Asplund distances to different exposure-times.

Fig. 10. (a) Bright image f acquired with an exposure-
time of 1/5 s. The probe function b is shown by the
white arrow. (b) Ball detection in a dark intermediate
image fqr, (exposure-time of 1/80s). (c) Ball detection
in a dark image fyi, (exposure-time of 1/160 s). (d)
Map of LIP-additive Asplund distances Aspb%’p f< of

the image f, (e) map Aspb% » fjkl of the image fq1, and

(f) map AspbAC » f;kz of the image fyi,. The tolerance
parameter p is set to 70%.
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(d (e)

Fig. 11. (a) Image f of the fixed object acquired with
an exposure-time of 1/13 s. The probe function b is
delineated in white. (d) Map of Asplund distances
AspﬁpfC of the complement of f. (b) Blurred image
Smovpi of the moving object acquired with the same
exposure-time of 1/13 s. (c) Disk detection in a dark
image fmovak Of the moving object acquired with a
short exposure-time of 1/160 s. The balls (delineated
in white) are detected by finding the regional minima
of its (e) map of LIP-additive Asplund distances
Aspﬁ » p vk For each map, the tolerance parameter
p is set to 95%.

The map of LIP-additive Asplund distances is also
useful for detecting moving objects. In Fig. 11, a white
disk with patterns is mounted on a turn table of a
record player. The patterns include four small coloured
disks and confounding shapes (i.e. eagles). First of all,
an image f with good contrasts is captured with an
appropriate exposure-time, 1/13 s (Fig. 11a). In this
image, a circular probe b is selected inside a coloured
disk. The record player is then started up at a speed
of 45 tours/min and two images are captured. The
first image fiu0051, Which is acquired with the same
exposure-time as the one of f, is correctly exposed
but blurred (Fig. 11b). As it is blurred, it is useless
to detect the coloured disks. A second image fiuov,dk
is acquired at a shorter exposure-time of 1/160 s.
This second image is not blurred but darker than f
(Fig. 11c). The map of LIP-additive Asplund distances
of its complement, Aspb% » Smovax (Fig. 11e), is useful
for the detection of the coloured disks. Those are
detected by finding the regional minima of the map
with sufficient height using the h-minima transform
(Soille, 2004). The regional minima with too large or
too small area are also removed. By comparing the
map of the moving disk image As pﬁ » Sovar (Fig. 11€)

to the map of the fixed disk image Asp,% » f¢ (Fig. 11d),
one can notice that they both present similar shapes
and amplitudes although the images f and f,,,y 4k are
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captured with different conditions. In particular, the
kinetics of the scene are different because the disk
is fixed or turning, and the lighting conditions differ
significantly because the exposure-times are varying
by a factor 12.

Fig. 10 shows the robustness of the LIP-additive
Asplund metrics under intensity variations caused by
variable exposure-times. Fig. 11 shows its efficiency
to detect moving objects in dark images acquired with
a small exposure-time which is necessary to capture
an unblurred view of the object. Such cases occurs in
many applications like medical images (Noyel et al.,
2017) or industry (Noyel, 2011; Noyel et al., 2013).
E.g. in industrial control the objects are often presented
to the camera on a conveyor (linear, circular, etc.)
whose speed varies with the production rate.

LIP-multiplicative metric: images acquired
with a variable absorption of the medium

The independence of the map of LIP-multiplicative
Asplund distances under light variations due to
different absorption (or opacity) of the object is
verified with a montage we made. It is composed of
a transparent tank. A paper with motives is stuck on
one of its sides. On the opposite side, a camera is
disposed to capture an image of the paper through
a medium composed of the tank and its contents:
a green colourant diluted into water. Three images
Jfr (Fig. 12a), f3r (Fig. 12b) and fior (Fig. 12c)
are acquired for increasing concentrations of the
colourant: I, 3" and 12I', where I is the initial
concentration of the colourant in the tank. One can
notice that the image brightness decreases with the
increase of the colourant concentration. A circular
probe b is manually selected in the brightest image
Jr in order to detect similar shapes in the two other
images f3r and fior. A map of Asplund distances
is computed on the complement of each image with
the same probe b and the same tolerance parameter
p = 90%. One can notice that the three maps of
images Aspfy ff (Fig. 12d), Aspje  fir (Fig. 12e) and
As pﬁ7 »J1or (Fig. 12f) present similar amplitudes. They
are segmented by the same thresholding technique — at
the 33" percentile — and two area openings in order
to remove the too small and too large regions. The
selected regions are then dilated for display purpose.
One can notice that all the disks are detected in the two
darkest images far (Fig. 12b) and fior (Fig. 12¢) using
the probe b extracted in the bright image fr. These
results show the low sensitivity of the maps of LIP-
multiplicative Asplund distances to light variations
caused by different absorptions. Such a situation
occurs in images acquired by transmission (e.g. X-
rays, tomography, spectrophotometry, etc.) (Jourlin,
2016).
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Fig. 12. (a) Image fr acquired with a small
concentration, I, of colourant. The probe function b is
delineated in white. (b) Ball detection in an image fir
acquired with an intermediate concentration, 31, of
colourant. (c) Ball detection in an image fior acquired

with a high concentration — 12I' — of colourant.
(d) Map of LIP-multiplicative Asplund distances

Aspb&c » /T of the image fr. (e) Map Aspb% » fir of the

image fir. (f) Map Aspﬁ[7 fior of the image fior. The
tolerance parameter p is set to 90%.

Remark 14. In this section, probes with a
circular invariance have been used to facilitate the
presentation. However, the Asplund metrics are also
efficient to detect non-circular objects with adapted
probes. In addition, these metrics could be compared
to the SIFT detector which is robust to lighting
variations. The comparison has not been done in the
sequel, because the robustness to lighting variations
of the SIFT detector is not based on a physical law
contrary to the Asplund metrics. However, Noyel et al.
(2017) have shown that enhancing the contrast of
images improves registration methods based on SIFT
points (Lowe, 2004). We could therefore develop a
SIFT in the LIP framework. These findings will be the
studied in a future paper.

(b) (©)

CONCLUSION

We have successfully presented a new framework
of pattern matching robust to lighting variations
between low-contrast and high-contrast images. It
is composed of two metrics. Firstly, the LIP-
multiplicative Asplund metric is robust to illumination
changes due to variations of the object absorption or
opacity. Secondly, the LIP-additive Asplund metric is
robust to illumination changes caused by variations
of the source intensity or of the camera exposure-
time. Both metrics are respectively based on the
multiplicative and the additive laws of the LIP model
which give them strong optical properties. Both



functional metrics are thereby theoretically insensitive
to specific lighting variations. They extend to images
the property of insensitivity to object magnification of
the Asplund metric between binary shapes (Asplund,
1960; Griinbaum, 1963). After a presentation of
the functional metrics and their properties, we
have introduced robust to noise versions. We have
demonstrated that the maps of Asplund distances
between an image and a probe function are composed
of Mathematical Morphology operations. Both maps
of distances are especially related to the morphological
operations of dilations and erosions for functions.
Such a relation facilitates the programming of the
maps of distances because these operations exist in
numerous image processing libraries. The properties
of both metrics have been then verified with simulated
and real cases. Results have shown that the maps of
LIP-multiplicative and LIP-additive Asplund distances
are able to detect patterns in images acquired
with different illuminations, caused by a stronger
absorption of the object or by a shorter camera
exposure-time, respectively. Importantly, the probe can
be extracted in a highly contrasted image and the
detection performed in a lowly contrasted image. Such
properties pave the way to numerous applications
where illumination variations are not controlled: e.g.
in industry (Noyel et al., 2013), medicine (Noyel ez al.,
2014;2017), traffic control (Geiger et al., 2014), safety
and surveillance (Foresti er al., 2005), imaging of
moving objects (Noyel, 2011), etc. In the future, these
metrics will be extended to the analysis of colour
and multivariate images starting from the preliminary
ideas developed by Noyel and Jourlin (2015; 2017c).
They will also be related to Logarithmic Mathematical
Morphology (Noyel, 2019b).

APPENDIX

The appendix is organised as follows. We will
present the proofs of the propositions related to the
LIP-multiplicative Asplund metric (Prop. 1 and 5) and
to the LIP-additive metric (Prop. 6, 7, 8 and 9).

PROOFS OF PROPOSITIONS 1 AND 5
RELATED TO THE LIP-MULTIPLICATIVE
ASPLUND METRIC

Proof of proposition 1, p. 57. ¢; and c¢; can be
expressed as: ¢; =V, ep{y(x)} and c2 = A,cp {7v(x)}
with the function y= f A g, y € Fyy =] —oco, M[°. There
always exists a constant k = A\, p {7(x) } such that y A
k lies in J = [0, M[P and is thus an image. Let us define

¢} = Vaep{v(x) Ak} and § = Awep{7(x) Ak}
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¢k and & lie in [0,M[ and & > 5. There is:
dsy(f:8) Viep{¥(¥)} A& Awep{v(¥)} =
Viep{v(x) Ak} A Aep{r(x) Ak} = ¢f A

Therefore, d4.(f,g) lies in [0, M as the LIP-difference

between ¢k and ¢} € [0, M], where ¢k > ¢. O
Proof of proposition 5, p. 61 (Noyel and
Jourlin, 2017b). Let f € J be an image and

b € TP be a probe. Using Eq. 16, 22 and
24 and knowing that f < 0O, there is: Vx € D,

Ao f (x) = V_pep, {f(x — h)/b(—h)}. This leads to
Aof = (=))S(=1/b) =exp(In(=f) & (=In(=b)))
exp(F& (—b). o
Similarly, there is u,f (—f)o(=b)
exp[f©b]. The previous expressions of Auf
and u,f are used into AEq. 18 to obtain:

Aspf In(exp[f & (~b)]/exp[f ©b)])
[fe(=b)-[febl=5;f-&f.

O]

PROOFS OF PROPOSITIONS 6, 7, 8
AND 9 RELATED TO THE LIP-ADDITIVE
ASPLUND METRIC

Proof of proposition 6, p. 63. ¥x € D, Yh € Dy,
V¢ € Fy, there is:
c(x) Ab(h) > f(x+h) < c(x) > f(x+h) Ab(h).

Eq. 32 becomes therefore: ¢, f(x) =
inf{c(x),c(x) > f(x + h) A b(h),h € Dy} =
V{f(x + h) A b(h),h € Dp}. The last equality
is due to the complete lattice structure. In
a similar way, Eq. 33 becomes: c¢;,f(x)
sup{c(x),c(x) < f(x + h) A b(h),h € Dp}
ALF(x+h) B b(h),h € Dy}.

Ol

Proof of proposition 7, p. 63. Let b =by € (T)P
be a flat structuring element (Vx € D, b(x)
bp). Knowing that Aby preserves the order <

(i.e. it is an increasing operator), Eq. 34 of
c;, and Eq. 35 of ¢ can be simplified:
Vx € D, clbof(x) = V{f(x+h)Aby,h€ Dy} =
V{f(x—h),—he Dy} A by = (%bf(x) A by.

Similarly, czbof(x) = N{f(x+h),he Dy} A by =
ep, f(x) A by. Eq. 39, of the map of distances, is
deduced from Eq. 36 and the expressions of Cly, f
and €2, f.

Proof of proposition 8, p. 63. As Ab(h)
preserves the order < (i.e. it is an increasing
operator), there is: Vf,g € Fy, Vx € D,
c1,(f V 8)(x) = Vaep, {((f V&)(x+ 1)) Ab(h)} =
Viep, {(f(x + h) A b(h)) V (g(x + h) A b(h))} =
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[Viep, {f(x+h) Ab(M)}V [Viep,{8(x+h) Ab(h)}]
=c1,f(x) Ve, g(x).

In addition, Vx € D, ¢,(0)(x) = c1,(f-e)(x) =
Niep,{c(x),c(x) = (=eo(x + h) A b(h)} =
Niep,{c(x),c(x) = M(—e — b(h))/(M — b(h))} =
—co = O(x), because b(h) € |—oo, M|. Therefore ¢y,
is a dilation (Def. 4.2, p. 58).

Similarly, Vf,g € Fu, c2,(fAg) = c2,(f) Ao, (8

9

In addition, Vx € D, cp,(I)(x) = c2,(fm)(x)

Viep {c(x),c(x) < M(x + h) A bh)} =
Vien, {c(x),c(x) < M(M — b(h))/(M — b(h))} =
Viep,{c(x),c(x) < M} = M = I(x). Therefore ¢y, is

an erosion (Def. 4.1, p. 58).
O

Proof of proposition 9, p. 63. Let f,.g € Ty

be two functions. There is: &(f A g) =
~MIn[1 - (f & g)/M] = ~Mn[(1— f/M)(1 — g/M)
= —MIn(1—f/M)—MIn(1—g/M) =&5(f)+&(g).
5( g)=-Mn[l+g/(M—g)|=—-MIn[M/(M—g)]
= MIn(1-g/M) = —E(g), and S(f Ag) =
S(fA(Ag)=C(f)+c(Ag)=8(f)—&(g). O
SUPPLEMENTARY MATERIALS
The supplementary materials to this article
include: i) a video abstract, ii) the proofs of

propositions 2, 3 and 4, iii) the verification of the
properties of the LIP-additive Asplund metric, iv) the
proofs of the robust to noise metric invariances and
v) details about the illustration section.
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