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ABSTRACT

Random planar tessellations are presented which are generated by subsequent division of their polygonal
cells. The purpose is to develop parametric models for crack patterns appearing at length scales which can
change by orders of magnitude in areas such as nanotechnology, materials science, soft matter, and geology.
Using the STIT tessellation as a reference model and comparing with phenomena in real crack patterns, three
modifications of STIT are suggested. For all these models a simulation tool, which also yields several statistics
for the tessellation cells, is provided on the web. The software is freely available via a link given in the
bibliography of this article. The present paper contains results of a simulation study indicating some essential
features of the models. Finally, an example of a real fracture pattern is considered which is obtained using the
deposition of a thin metallic film onto an elastomer material – the results of this are compared to the predictions
of the model.

Keywords: fracture pattern, geometry-statistics, Monte Carlo simulation, random tessellation, STIT
tessellation.

INTRODUCTION

The main purpose of the paper is to develop a
variety of mathematical models and modeling tools
for the simulation of crack patterns. Our approach is
based on ideas of stochastic geometry, in particular
of random tessellations (random mosaics). We aim
at providing parametric models which allow for a
quantitative description of some classes of crack
patterns.

The literature contains numerous examples of
cracking and fracturing in fields ranging from
geology and materials science to soft matter and
nanotechnology. Often, these papers focus on the
genesis and physics of an individual crack, e.g.,
Thouless et al. (1987); Hutchinson and Suo (1991).
However, there are also approaches to whole crack
patterns, see e.g., Xia and Hutchinson (2000); Iben and
O’Brien (2006); Hafver et al. (2014); Boulogne et al.
(2015); Seghir and Arscott (2015); Nandakishore and
Goehring (2016); Kumar et al. (2017). Furthermore,
also networks of roads are modeled as tessellations, see
e.g., Yu et al. (2014).

Being able to model and predict large surface
cracking would be beneficial to those working in the
above mentioned applied fields. This is the reason
why we have developed the “Crack Pattern Simulator”
(León, 2019).

We consider tessellations of the Euclidean plane
R2 which are defined as a collection of convex
polygons partitioning the plane. The polygons forming
a tessellation are called cells.

The STIT tessellations – tessellations that are
STable under the operation ITeration of tessellations –
were invented and first introduced in Nagel and Weiß
(2005). This stochastic stability is an essential property
which also allows for many theoretical results.

STIT tessellations belong to a class of random
tessellations which are generated by consecutive
division of their cells. There are two features of such
a cell division process, as they were systematically
introduced in Cowan (2010):

L The rule for the random lifetime of a cell, i.e.,
the time between the birth of a cell by division
of a mother cell, and the division of the cell.

D The rule for the random division of a cell at the
end of its lifetime.

In these models it is assumed that the lifetime and
the division of an extant cell only depend on the cell
itself, and neither on the adjacent cells nor on the
history of the division process.

The specification of these rules for STIT is
described in the next section.
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The realization of a planar STIT tessellation in
Fig. 1 suggests that it can be a potential model for
crack or fracture patterns as they arise in materials
science, nanotechnology, geology, or drying soil
patterns.

However, already tentative studies in Nagel et al.
(2008) or Mosser and Matthäi (2014) indicated that
for several patterns the STIT tessellations are not
appropriate. This is not surprising because the STIT
model emerged from purely mathematical ideas. Thus,
an adaption of the cell division model to data of such
fracture patterns is necessary. We have chosen a more
“phenomenological approach”, i.e., we aim to model
the geometric appearance, not focusing on the physics
of crack formation.

In the present paper we suggest three modifications
of the STIT model which are motivated by
observations of fracture patterns. Briefly, the ideas
are: when a cell is divided, the dividing line tends to
be closer to the center of the cell than to the fringe
of the cell. Therefore, we suggest the division rule
D-GAUSS, which is introduced below.

Furthermore, the lifetime of a cell seems to depend
rather on its area than on its perimeter, i.e., the
probability that a cell is divided at a certain moment
is larger the larger its area is. This motivates the
consideration of L-AREA, where the lifetime of a
cell is exponentially distributed with its area as the
parameter.

Firstly, we describe the planar STIT tessellation,
and then we explain how to generate realizations
by Monte Carlo simulation for a given directional
distribution of the cell dividing lines.

In the second part of the paper we introduce the
mentioned modifications of the STIT model, which are
more flexible and thus potentially allow for a better
adaption to actual fracture patterns. We present and
explain the “Crack Pattern Simulation Tool” (León,
2019) for these models.

Furthermore, some quantitative results of a
simulation study are given where we compare the
models with respect to certain features.

In the last part of the paper we consider data from
a real fracture pattern obtained using the deposition
of a thin chromium/gold film onto an elastomer
(polydimethylsiloxane, PDMS). A tensile stress in the
layered material leads to film cracking. We check
how good some statistical parameters can be fitted by
the introduced models. A more detailed and thorough
modeling will be the subject of forthcoming work.

THE PLANAR STIT MODEL

Denoting by R2 the Euclidean plane and by P the
set of all convex polygons, a subset T ⊂P is called a
tessellation if

(i) the polygons fill the plane, i.e.,
⋃
z∈T

z = R2,

(ii) the polygons do not overlap; more precisely, for
all z,z′ ∈ T , if z 6= z′, then intz∩ intz′ = /0, where
intz denotes the topological interior of z,

(iii) T is locally finite, i.e., the set {z ∈ T : z∩C 6= /0}
is finite for all compact sets C ⊂ R2.

A random tessellation is a random variable with values
in the set of all tessellations.

A construction of STIT tessellations in bounded
windows in a Euclidean space of arbitrary dimension
was described in all details in Nagel and Weiß (2005).
A global construction, i.e., in the whole space, was
given in Mecke et al. (2008).

Here we give a description of the planar STIT
tessellations in a convex polygon W ⊂ R2, referred to
as the window. Let H denote the set of all lines in
the plane. A line H = H(α,r) ∈H is parametrized by
its normal direction α ∈ [0,π) and its signed distance
r from the origin, where the distance has a positive
sign if the intersection of the line with its orthogonal
subspace is in the upper half plane. For a line H that
does not contain the origin, denote by H+ and H− the
closed halfplanes generated by H, where H+ contains
the origin. Note that in our context the random lines
contain the origin with probability zero. For a set B ⊂
R2 denote by [B] = {H ∈H : H∩B 6= /0} the set of all
lines intersecting B.

Up to a scaling factor, the distribution of a STIT
tessellation is determined by the choice of a directional
distribution ϕ , which is a probability distribution on
the interval [0,π). In Eq. 1 and Remark 1 it is explained
how ϕ determines the distribution of the lines dividing
the cells. Throughout the paper, it is assumed that ϕ is
not concentrated on a single value. This guarantees that
the constructed object is indeed a random tessellation
(Schneider and Weil, 2008).

Based on ϕ , a translation invariant measure Θ on
H is determined, up to a constant factor, by∫

H
f (H)Θ(dH) =

∫
[0,π)

∫
R

f (H(α,r)) dr ϕ(dα)

for any nonnegative measurable function f : H →
[0,∞), see Section 4.4 of Schneider and Weil (2008).
An interpretation of this formula and the application in
the Monte Carlo simulation is given below.

For a convex polygon z and a fixed direction
0 ≤ α < π denote by h0(z,α) ≤ h1(z,α) the two
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values of the signed distances of the tangential lines
to z with normal direction α . Formally, h0(z,α) =
min{xcosα + ysinα : (x,y) ∈ z} and h1(z,α) =
max{xcosα + ysinα : (x,y) ∈ z}. Hence, a line
H(α,r) ∈ [z], i.e., H(α,r) divides z, if and only if
h0(z,α)< r < h1(z,α).

By b(z,α) = h1(z,α) − h0(z,α) we denote the
value of the width (or breadth) function of z in
direction α , i.e., the distance of the two supporting
(tangential) lines to z which have the normal direction
α . The maximum width of z is denoted by bmax(z) =
max0≤α<π b(z,α), and the minimum width of z is
denoted by bmin(z) = min0≤α<π b(z,α).

By 1{·} we denote the indicator function which is
1 if the condition in {·} is satisfied, and 0 otherwise.
For 0 < α0 ≤ π and a convex polygon z we obtain

Θ({H(α,r) ∈ [z] : 0 < α < α0})

=
∫
[0,π)

1{0 < α < α0}b(z,α)ϕ(dα) , (1)

and in particular for α0 = π

Θ([z]) =
∫
[0,π)

b(z,α) ϕ(dα) . (2)

Hence, Θ([z]) can be understood as the ϕ-weighted
mean width of z. If ϕ is the uniform distribution
on [0,π) then Θ([z]) = P(z)/π , where P denotes the
perimeter.

For a convex polygon z we define a probability
distribution Θ[z] on the set [z] of all lines which
intersect z by

Θ[z](·) = Θ(·∩ [z])/Θ([z]) .

Remark 1 Notice that according to Eq. 1 the
directional distribution of a line which intersects a
polygon z is not ϕ itself, but it is ϕ endowed with the
density b(z,α)/Θ([z]). This must be taken into account
when a dividing line is generated in the Monte Carlo
simulation of a STIT tessellation.

A loose and informal description of the STIT
tessellation process is:

L-STIT A cell z, that is born by the division of a
larger cell, has a random lifetime which
is exponentially distributed with parameter
Θ([z]).

D-STIT At the end of its lifetime, z is divided by a
random line H with law Θ[z], independent
of the lifetime, and conditionally
independent, given z, of all the dividing
lines used before.

To give a formalized definition of the STIT
tessellation process, let N denote set of positive
integers and let τ = (τn : n ∈ N) be a sequence of
independent and identically distributed (i.i.d.) random
variables, exponentially distributed with parameter
1. The lifetime of a cell zi will be τi/Θ([zi]), i.e.,
exponentially distributed with parameter Θ([zi]).

Let W ∈P be a convex polygon, referred to as
a window. Now we define the process (Yt,W : t > 0)
of STIT tessellations, restricted to the window W . The
birth time of a cell z is denoted by β (z). This definition
looks rather involved but its advantage is that it at once
provides an algorithm for the STIT construction.

Definition 1 The STIT tessellation process (Yt,W : t >
0) in W , driven by the measure Θ is defined by

(a) Initial setting.
Yt,W = {W} for 0 < t < τ1/Θ([W ]), β (W ) = 0
and z1 =W.

(b) Recursion.
For t > 0, let be Yt,W = {zi1 , . . . ,zin},
i.e., β (zik) < t and β (zik) + τik/Θ([zik ]) ≥ t for
k = 1, . . . ,n.
Define i∗ ∈ {i1, . . . , in} as the index of the cell
which is the next to be divided, such that

ti∗ = β (zi∗)+ τi∗/Θ([zi∗ ])

= min
{

β (zik)+ τik/Θ([zik ]) : k = 1, . . . ,n
}
.

Then Yt,W remains constant until the jump at time
ti∗ , when the process jumps, by division of the cell
zi∗ into the state

Yti∗ ,W = ({zi1 , . . . ,zin}\{zi∗})∪{z2n,z2n+1}

with z2n = zi∗ ∩H+
i∗ , z2n+1 = zi∗ ∩H−i∗ , where Hi∗

is a random line with law Θ[zi∗ ] and independent
of τ and conditionally independent, given zi∗ , of
the n−1 dividing lines used before.
The birth time of the dividing line and of the new
cells is β (Hi∗) = β (z2n) = β (z2n+1) = ti∗ .

When zi is divided, the cell zi is replaced by its
two daughter cells zi∩H+

i and zi∩H−i with birth time
β (zi∩H+

i ) = β (zi∩H−i ) = β (zi)+ τi/Θ([zi]). At any
fixed time t the tessellation Yt,W is a STIT tessellation,
restricted to the window W .

A crucial feature of the construction is that the
parameter of the exponentially distributed lifetime
depends on the size of the cell, expressed by Θ([z]),
such that smaller cells have a longer expected
lifetime than larger ones. In the particular case when
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the measure Θ is isotropic, i.e., ϕ is the uniform
distribution on [0,π), the parameter of the exponential
lifetime distribution of a cell z is Θ([z]) = P(z)/π , the
perimeter of z divided by π .

Remark 2 Even if this construction is performed in a
fixed and bounded window W it provides a distribution
that is spatially consistent in the following sense. Let
W ′ ⊂ W be a convex polygon, (Yt,W ′ : t > 0) and
(Yt,W : t > 0) the STIT tessellation processes generated

in W ′ and W, respectively. The symbol D
= stands for the

identity of distributions of random variables. Then for
all t ≥ 0 we have that

Yt,W ′
D
= {z∩W ′ : z ∈ Yt,W ,W ′∩ intz 6= /0} ,

i.e., the restriction of Yt,W to W ′ has the same
distribution as Yt,W ′ . This consistency property yields
that, for any t > 0, there exists a spatially stationary
(or homogeneous, which means the invariance of the
distribution under translations of the Euclidean plane)
random tessellation Yt of R2 such that the restriction
of Yt to W has the same distribution as Yt,W for all
polygons W ∈P .

The process (Yt : t > 0) has the following scaling
property

t ·Yt
D
= Y1 , for all t > 0, (3)

where t ·Yt = {t · z : z ∈Yt} and t · z = {tx : x ∈ z}. This
space-time relation of the STIT tessellation process
can be taken into account in the design of a simulation
study.

SIMULATION OF PLANAR STIT
TESSELLATIONS

In León (2019) we provide a simulation tool which
is described in the present section. The window W
is a square of side length a, which can be chosen in
the range a ∈ N, i.e., a positive integer, e.g., a = 1.
Then one has to choose the time tSTOP ∈ N, at which
the construction stops, e.g., tSTOP = 50. Regarding the
scaling property Eq. 3 it would – theoretically – be
sufficient to choose tSTOP = 1, but in order to obtain a
reasonable number of cells in a simulation, the value of
tSTOP should be chosen in an appropriate relation to a.

While the choice of a and tSTOP is an issue of
scaling, the selection of a directional distribution ϕ for
the cell dividing lines is an essential ingredient of a
STIT tessellation model. By δα we denote the Dirac
measure, concentrated on a single value 0 ≤ α < π ,
i.e., δα(B) = 1 if α ∈ B and 0 otherwise, for a subset

B ⊆ [0,π). In the simulation tool one can choose one
of the following directional distributions.

List of directional distributions available in the
simulation program

ISO: The isotropic distribution, i.e., ϕ is the
uniform distribution on the interval [0,π).

DISCR: A discrete distribution with finitely many
directions, i.e., ϕ = ∑

k
i=1 piδαi , 2≤ k, with

0 ≤ αi < π and probabilities 0 < pi < 1,
∑

k
i=1 pi = 1. In the generated tessellation

solely segments with normal directions
α1, . . . ,αk appear. Once the number k of
directions is chosen, 2 ≤ k ≤ 32 in León
(2019), one has to insert the values αi as
the radian divided by π , e.g., the input 0.5
means the angle 0.5π = 90◦. And for each
αi its probability pi has to be inserted.

DDISCR: A disturbed discrete distribution, i.e.,
ϕ =

(
∑

k
i=1 piδαi

)
∗ ψ , where ψ is the

elliptic distribution with parameter bellip,
see ELLIP below. The ∗ denotes the
convolution of measures. This means that
a random ‘disturbance’ with an elliptic
distribution is added to a direction, which
is chosen from a discrete distribution
DISCR.

RECT: The discrete distribution with horizontal
and vertical directions only, and both
with the same probability, i.e., ϕ =
0.5δ0 +0.5δπ/2, which is a particular case
of DISCR. The tessellation consists of
random rectangles.

DRECT: The discrete distribution RECT which
is disturbed by the elliptic distribution
ELLIP with parameter bellip < 1. This is a
particular case of DDISCR.

ELLIP: An elliptic distribution. Consider an ellipse
with horizontal half axis of length 1 and
vertical half axis of length bellip < 1. Then
the cumulative distribution function of ϕ is
defined as

Fϕ(α) =
area of ellipse sector [0,α]

half area of the ellipse
,

0≤ α < π.

Notice that for the value bellip = 1 we
obtain the isotropic distribution ISO.

An elliptic distribution can be applied to model
a compressed pattern as it appears in geological
crack structures or rolled material, cf. Stoyan et al.
(1980) and an analogon in 3 dimensions in Ohser and
Schladitz (2009), p. 252.
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(a) ISO, CV(A) = 1.91. (b) RECT, p1 = p2 = 0.5, CV(A) = 1.67.

(c) DRECT, p1 = p2 = 0.5, bellip = 0.1, CV(A) = 2.28. (d) ELLIP, bellip = 0.2, CV(A) = 1.8.

Fig. 1: Simulations of STIT tessellations with different directional distributions

Fig. 1 shows some examples of simulations
of STIT tessellations for different directional
distributions.

The algorithm for the Monte Carlo simulation of
STIT tessellations follows Definition 1. The integral in
Eq. 2, which is needed to determine the lifetime of an
extant cell z, is discretized and replaced by a sum using
128 equidistant angles in [0,π). This discretization
proved to be sufficiently good for the directional
distributions considered. Regarding Remark 1, the
simulation of the direction of the line dividing a cell
z requires special attention, because it is not correct

to generate the direction of the dividing line directly
from ϕ . In León (2019) we apply a rejection method:
For a given cell z, generate a direction α according
to ϕ and a random number d which is uniformly
distributed in the interval [h0(z,α),h0(z,α)+bmax(z)].
The simulated line H(α,d) is accepted as a dividing
line, if d < h1(z,α), otherwise it is rejected. Recall that
h0(z,α)< h1(z,α) are the two signed distances of the
tangential lines to z with normal direction α . If for a
cell z the dividing line is accepted, its random (signed)
distance d from the origin is uniformly distributed
in the interval [h0(z,α),h1(z,α)], i.e., in the set of
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those positions where the line intersects z. Thus, the
direction of the accepted dividing line is correctly
simulated according to Eq. 1.

MODIFICATIONS OF THE STIT
TESSELLATION

In order to extend the variety of models for crack
tessellations, let us reconsider the items L and D given
in the Introduction and modify the rules.

L-AREA The lifetime of a cell z is exponentially
distributed with parameter A(z), where A
denotes the area.

D-GAUSS The simulation by the rejection
method of the random direction of
the cell dividing line is the same as
in the STIT model. But then, for
a cell z and an accepted direction
α , the signed distance d from the
origin is not uniformly distributed
in the interval [h0(z,α),h1(z,α)],
but according to a truncated (to the
interval [h0(z,α),h1(z,α)]) Gaussian
distribution with standard deviation
σ · b(z,α) = σ (h1(z,α)− h0(z,α)) and
mean 0.5(h0(z,α) + h1(z,α)). Thus,
σ > 0 is an additional parameter in this
model. In the simulation tool one can
choose it in the range 0 < σ < 1. The
smaller the value of σ is chosen, the
more concentrated to the center of the
interval [h0(z,α),h1(z,α)] is the random
value of d.

Combining these rules, we focus on the following
four types of models: (L-STIT, D-STIT), (L-STIT,
D-GAUSS), (L-AREA, D-STIT), (L-AREA,
D-GAUSS). In all of them, first choose a directional
distribution ϕ . In the simulation tool León (2019) all
the distributions ISO, DISCR, DDISCR and ELLIP
listed above, can be combined with any of the four
models.

Remark 3 Notice that essential properties of the STIT
tessellation process, such as the spatial consistency
and the scaling property are lost in the modified
models. Therefore, the theoretical results proved for
the STIT model cannot be applied. Up to a few
exceptions, only simulation studies can be performed
to investigate properties of these models.

As the modifications of STIT lose the spatial
consistency property, we cannot avoid edge effects,

also in the generation of the tessellations. In order to
attenuate the dependence on the chosen window W in
the models with D-GAUSS, we start the simulation
with a simulation of a STIT tessellation process until
a time tSTOP ∈ N, and then, putting the clocks back to
0, the simulation of the modified model is launched
until time tGAUSS ∈ N, but only in those cells of the
generated STIT tessellation which do not intersect the
boundary of the window W . Fig. 2 shows cut-outs of
the simulations where the boundary cells are not seen,
in order to provide a better impression of the models.
The boundary cells are also not taken into account in
the following statistical analysis.

Notice that until time tSTOP, the simulation yields
an initial tessellation which is not the intended one
– the result depending on the relation between tSTOP

and tGAUSS. In order to see the effect of D-GAUSS, the
value of tGAUSS should be large compared to tSTOP. In the
example below with real data, we obtain good results
with tSTOP = 500 and tGAUSS = 2000. In our simulation
studies, we have chosen tSTOP = 32, tGAUSS = 256 and
tSTOP = 1024, and tGAUSS = 2048 respectively. Further
examples are given in Fig. 2. When fitting a model to
data, tSTOP and tGAUSS can also be taken into account as
additional parameters of the model.

STATISTICS OF THE CELLS

The simulation tool León (2019) provides
images of the simulated tessellations and thus a
visual impression of the models. Furthermore, some
quantitative features of the obtained tessellations
are determined and presented. For the cells z which
do not intersect the boundary of the window W ,
we consider the area A(z), the maximal width
bmax(z), the minimal width bmin(z), the aspect ratio
ASR(z) = bmin(z)/bmax(z) and the isoperimetric
quotient RD(z) = 4πA(z)/P2(z), where P is the
perimeter. In the literature the isoperimetric quotient is
also referred to as roundness or sphericity. Notice that
ASR and RD are invariant with respect to scaling.

For a given obtained tessellation, the mean value
(MEAN), the mean squared error (MSE), the standard
deviation (SD) and the coefficient of variation (CV) are
shown.

The estimation of a cell statistic based on an
obtained tessellation in a bounded window is biased.
This is caused by edge effects. As the modifications
of STIT are not spatially consistent, the edge effects
cannot be treated exactly – even for those cells
which are completely contained inside the window.
Therefore, we cannot remove the bias, only reduce
it. To do this, we apply an edge correction, inspired
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(a) (L-STIT, D-STIT), tSTOP = 40, CV(A) = 1.95 (b) (L-AREA, D-STIT), tSTOP = 512, CV(A) = 1.26

(c) (L-STIT, D-GAUSS), σ = 0.01, tSTOP = 20, tGAUSS =

35, CV(A) = 1.34
(d) (L-AREA, D-GAUSS), σ = 0.01, tSTOP = 30,
tGAUSS = 450, CV(A) = 0.82

Fig. 2: Simulations of isotropic tessellations with different lifetime distributions L and division rules D. In all the
realizations are about 500 cells.

by the Miles-Lantuejoul method (Serra, 1982; Chiu
et al., 2013). Any cell which does not intersect the
boundary of the window is given a weight, which is
proportional to the reciprocal of the probability that
this cell is completely contained in the window. This
compensates for the different chances of the cells to
appear completely inside the window. In a square
window of side length a and parallel to the horizontal
and vertical axes, the weight of a cell z⊂W is

w(z) =
1

(a−b(z,0))(a−b(z,π/2))
.

The formula to calculate the mean area of the cells in
a given simulation is

MEAN(A) =
1

∑z⊂W w(z) ∑
z⊂W

w(z)A(z) ,

the mean squared error is
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MSE(A) =
1

∑z⊂W w(z) ∑
z⊂W

w(z)(A(z)−MEAN(A))2 ,

the estimated standard deviation is SD(A) =√
MSE(A), and the estimated coefficient of variation

is CV(A) = SD(A)/MEAN(A).

For the other entities, the corresponding formulae
are obtained by simply replacing the symbol A by P,
RD, bmax, bmin, ASR, respectively.

The isoperimetric quotient RD and the aspect ratio
ASR are invariant with respect to scaling, and they
provide information about the shapes of the cells.
For all the entities the coefficient of variation CV is
scale invariant and expresses the variability of these
entities within a realization of the tessellation, i.e.,
a small value of CV means that the structure is
more ’homogeneous’, i.e., the differences between the
individual cells are relatively small. The CV is a useful
and efficient criterion for checking the goodness-of-fit
of a model to a real structure.

Fig. 2 shows realizations of isotropic tessellations
for the STIT model and for the three modifications.
In (a) and (b) the simulation was performed in a
window of size 1. For D-GAUSS the window size
for the simulation was 2, and then the central part of
size 1 was cut out and this is shown in (c) and (d).
The times tSTOP, and tGAUSS are chosen such that in all
cases there are about 500 cells. The very tiny cells
are not visible in these panels. A comparison of the
stopping times for L-STIT and L-AREA indicates that
the division process is considerably slower when the
lifetime distribution of the cells depends on the area.

COMPARISON OF THE MODELS –
A SIMULATION STUDY

Whereas there are numerous theoretical results for
STIT tessellations, the modified models can (up to
now) only be investigated by simulation studies. We
have considered some examples in order to see how
the modified models differ from STIT – and how they
depend on the choice of their parameters.

Besides ISO and ELLIP, we focused on the
directional distributions RECT and DRECT.

Some results of our simulation study are given
in the Tables 1 and 2. The data are based on 100
repetitions of simulations with window side 1. The
number of cells is indicated in order to show the
sample sizes the estimated values are based on. Our
focus is on the scale-independent CV-values, not on
the number of cells. Clearly, the number of cells can

be increased by increasing tSTOP or tGAUSS, respectively.
But there is no theoretical basis to control the number
of cells in the modified tessellation models.

In Figs. 3 and 4, for D-GAUSS the estimated
values of CV(A) are plotted against σ , 0.1 ≤ σ ≤ 5.
For the elliptic directional distribution the parameter is
bellip = 0.1. The simulations for Fig. 3 are performed
with tSTOP = 32, tGAUSS = 256 and for Fig. 4 are
performed with tSTOP = 1024, tGAUSS = 2048. Each
value is based on 50 repeated simulations in a window
of size 1.
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Fig. 3: The value of CV(A) as a function of σ for (L-
STIT, D-GAUSS).
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Fig. 4: The value of CV(A) as a function of σ for (L-
AREA, D-GAUSS).

We summarize our observations.

It can be seen in Tables 1 and 2 that CV(A) for (L-
STIT, D-GAUSS) for σ = 0.01 is considerably smaller
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Table 1: Values of CV for D-STIT with tSTOP = 32 for L-STIT and tSTOP = 256 for L-AREA. In the cases DRECT
and ELLIP parameter bellip = 0.05.

D-STIT L-STIT L-AREA

CV # cells CV # cells

ISO

Area 1.84±0.27

282±54

1.17±0.09

198±15
Isoper. Quotient 0.31±0.02 0.30±0.02
Max Width 0.85±0.06 0.63±0.04
Min Width 0.98±0.07 0.72±0.04
Aspect Ratio 0.42±0.02 0.41±0.02

RECT

Area 1.63±0.21

223±40

0.98±0.07

202±17
Isoper. Quotient 0.45±0.03 0.44±0.03
Max Width 0.71±0.05 0.57±0.09
Min Width 0.99±0.07 0.72±0.04
Aspect Ratio 0.64±0.04 0.63±0.04

DRECT

Area 1.72±0.26

227±45

1.06±0.10

202±16
Isoper. Quotient 0.45±0.03 0.45±0.02
Max Width 0.75±0.06 0.59±0.06
Min Width 0.99±0.08 0.72±0.04
Aspect Ratio 0.56±0.03 0.56±0.03

ELLIP

Area 1.48±0.22

77±18

1.15±0.09

167±15
Isoper. Quotient 0.57±0.05 0.57±0.04
Max Width 0.79±0.07 0.68±0.05
Min Width 0.92±0.10 0.74±0.05
Aspect Ratio 0.70±0.08 0.71±0.05

Table 2: Values of CV for D-GAUSS with σ = 0.01 and tSTOP = 32, tGAUSS = 256 for L-STIT and tSTOP =
256, tGAUSS = 512 for L-AREA. In the cases DRECT and ELLIP parameter bellip = 0.1.

D-GAUSS L-STIT L-AREA

CV # cells CV # cells

ISO

Area 1.14±0.023

19631±1293

0.88±0.05

383±23
Isoper. Quotient 0.20±0.002 0.26±0.01
Max Width 0.52±0.005 0.49±0.03
Min Width 0.54±0.005 0.52±0.02
Aspect Ratio 0.31±0.002 0.37±0.02

RECT

Area 1.08±0.030

12675±1142

0.78±0.05

406±28
Isoper. Quotient 0.21±0.006 0.35±0.02
Max Width 0.51±0.008 0.54±0.06
Min Width 0.57±0.009 0.55±0.03
Aspect Ratio 0.37±0.006 0.51±0.03

DRECT

Area 1.13±0.025

15792±1113

0.85±0.05

390±23
Isoper. Quotient 0.24±0.003 0.32±0.02
Max Width 0.52±0.006 0.48±0.03
Min Width 0.56±0.006 0.52±0.02
Aspect Ratio 0.33±0.004 0.42±0.02

ELLIP

Area 1.14±0.039

7521±1056

0.88±0.06

361±25
Isoper. Quotient 0.37±0.006 0.41±0.02
Max Width 0.58±0.010 0.54±0.04
Min Width 0.56±0.009 0.56±0.03
Aspect Ratio 0.51±0.006 0.55±0.03
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than for (L-STIT, D-STIT). This is not surprising,
because for small values of σ the lines tend to divide
the cells more ’central’, see also Fig. 2. The Fig. 3 and
Fig. 4 illustrate the dependence on σ of CV(A). The
apparent limit for increasing σ is plausible because the
truncated Gauss distribution converges to the uniform
distribution on the respective interval and thus the
difference between D-GAUSS and D-STIT vanishes.
It is remarkable, that even for very small σ the CV(A)
is never smaller than 1. We checked this also for values
σ = 10−4. This phenomenon is observed for all the
considered directional distributions. Obviously, CV(A)
also depends on the directional distribution, see Table
2. Notice, that in real crack patterns, as shown in the
section below or in Nagel et al. (2008), CV(A) is
clearly smaller than 1.

A reason for the apparently large lower bound for
CV(A) is that the lifetime distribution L-STIT does not
depend on the area of a cell z, but on Θ([z]), which
is for the directional distributions ISO and RECT
proportional to the perimeter of z. This motivates
an investigation of the (L-AREA, D-STIT) and (L-
AREA, D-GAUSS) models. And indeed, the CV(A)
is distinctly smaller than in the corresponding L-STIT
models.

We remark, that for the (L-AREA, D-STIT) model
with the directional distribution RECT we have a
theoretic result that CV(A) = 1 asymptotically, when
the window side goes to infinity (a manuscript in
preparation by Martı́nez and Nagel).

For (L-AREA, D-GAUSS), our simulations with
σ = 0.01indicate, that for DRECT the CV(A) seems
not considerably depend on the parameter bellip, we
observed CV(A)≈ 0.7 for all 0.001≤ bellip ≤ 1.

Qualitatively, CV(bmax) and CV(bmin) behave
similar as CV(A), but quantitatively, the changes of the
values are small.

In the cases which we considered, the CV of the
isoperimetric quotient RD and of the aspect ratio ASR
seems not to change significantly between L-STIT
and L-AREA for the division rule D-STIT. But for
the division rule D-GAUSS, the CV for L-AREA are
larger than for L-STIT.

AN EXAMPLE OF EXPERIMENTAL
CRACKING

Sample preparation and microscopy: The
experimental cracking shown in Fig. 5 was obtained
by metallizing polydimethylsiloxane (PDMS).

The details of the fabrication can be found in a
previous article (Seghir and Arscott, 2015) published
by one of the authors. In the case here, the specific
metallization was a chromium/gold (20/100 nm)
bilayer film deposited using thermal evaporation. Prior
to metallization, the PDMS had been treated with an
appropriately-dosed oxygen plasma to create a thin
brittle silica film on the surface of the PDMS – this
brittle film enables the observed “mud-cracking” seen
in Fig. 5. The cracking is due to the process-induced
stress present in the thermally-evaporated chromium
film – which is known to be high. The gold regions
in the figure are the uniform chromium/gold layer, the
black lines are the cracks in the metallization and the
brittle silica surface layer. The large field image shown
(12 × 8.7 mm, 12425 × 9021 pixels of side length
0.96 µm) in the figure was produced using optical
microscopy by stitching together 144 images using a
digital microscope VHX-6000, Keyence, Japan. Fig. 6
shows zoom images of the cracking.

The result of image analysis is shown in Table
3. The area A(z) of the cells is estimated by pixel
counting, i.e., Â(z) = nc2, where n is the pixel number
and c is the pixel size. The cells are convex, and hence
the accuracy of Â(z) can be estimated based on the
Steiner formula (Schneider and Weil, 2008). Let Br
denote the circle with radius r, centered in the origin,
	 and ⊕ the Minkowski subtraction and addition,
respectively. From z	Br ⊆ z ⊆ z⊕Br it follows for
r = c/12 that

A(z)− c
12

P(z)/ Â(z)/ A(z)+
c

12
P(z)+

πc2

144
.

Hence, the relative deviation δ (Â) = (Â(z) −
A(z))/A(z) from the true area A(z) can be estimated
by

cP(z)
12A(z)

/ δ (Â)/
12cP(z)+πc2

144A(z)
.

This formula shows the influence of the lateral
resolution, expressed by c on the error bounds. If, e.g.,
c = 1 µm and z is a square of the side length 20 µm, the
above estimate yields −1.667% / δ (Â)/ 1.672%.

The estimation of the perimeter P(z) is usually
based on a discrete version of one of Crofton’s
intersection formulae (Ohser et al., 1998), where
the discretization is induced by the sampling of the
continuous set z on a square point lattice of spacing c.
Let P̂(z) be an estimate of the perimeter and δ (P̂) =(
P̂(z)−P(z)

)
/P(z). Then the Steiner formula and

same arguments as for the area yield

− πc
12P(z)

/ δ (P̂)/
πc

12P(z)
,

see also Ohser et al. (1998), where the accuracy of the
perimeter estimation is treated in detail.
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Fig. 5: Optical microscopy image of cracking of metallized (Cr/Au – 20/100 nm) PDMS. The metallization is
indicated in gold, the cracks in black where the PDMS is visible. The metallization is a chromium/gold bilayer
having a thickness of 20/100 nm. The image was taken using a digital optical microscopy VHX-6000, Keyence,
Japan. The image (12×8.7 mm, 12425×9021 pixels of side length 0.96 µm) is composed of 144 images stitched
together.

The minimal and the maximal widths are estimated
using the convex hull C of the set of pixels
belonging to z, where in our approach the convex
hull was effectively determined using Graham’s scan
algorithm (Graham, 1972). The estimates are b̂min(z)=
bmin(C) + c and b̂max(z) = bmax(C) + c, respectively.
Thus, the relative errors of these estimators should be
between −c/12 and c/12.

As the isoperimetric quotient and the aspect ratio
are ratios of random numbers, it is difficult to estimate
their errors. However, it is expected that also for these
ratios the errors decrease with decreasing pixel size c.

Nevertheless, for very small cells the relative
error can be large. In our example, Fig. 5 consists
of 12425 × 9021 pixels of side length 0.96 µm.
Therefore, we believe that we have found a good
balance of sufficiently high lateral resolution and
sufficiently large sample size, as a basis for reasonable
statistics.

Let us consider the sample of a crack pattern
shown in Fig. 5 and check whether one of the presented
models can approximately be fitted. At a first glance,
one does not see preferred directions, and thus the
overall directional distribution can be isotropic. But
comparing the sample with the simulations for the
directional distribution ISO, it becomes obvious that
ISO will not be appropriate. In particular, in the sample
the proportion of quadrangles is considerably higher
than in the models with ISO. Therefore, we choose a
disturbed discrete directional distribution DRECT with
the parameter 0 < bellip < 1.

The data in Table 3 and the results for CV(A) of our
simulation study suggest to choose an (L-AREA, D-
GAUSS) model and to look for appropriate parameter
values.
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Fig. 6: Zoom images of the cracking taken using
the optical microscope. (a) ×200 magnification/pixel
size = 1.06 µm, (b) ×1000 magnification/pixel size
= 0.2 µm, and (c) ×5000 magnification/pixel size =
0.044 µm. In (c) the crack width is 5.45±0.34 µm.

As a first goodness-of-fit criterion we consider
CV(A), the coefficient of variation of the cell areas.
It is a scale invariant statistic, and it is rather robust
concerning digitization effects in image analysis.

As shown in Table 4, the choice bellip = 0.1,
σ = 0.1, tSTOP = 500, tGAUSS = 2000, window side
a = 1, yields a good approximation for CV(A). An
obvious flaw is that the shape indicators MEAN(RD)
and MEAN(ASR) are too small compared to the data
in Table 3. Regarding an example of a tessellation

as shown in Fig. 7, one can see that there appear
numerous acute triangles which we do not observe
in the sample in Fig. 5, and such triangles have
small values of RD and of ASR. It will be a
subject of our future work to modify the model by
suppressing small angles between the edges of the
tessellations. Regarding the scale dependent entities,
for the mean area and the mean perimeter, 1 unit of
the simulation scheme corresponds to 894 µm and
750 µm, respectively. For Min Width the scaling factor
is about 1000, and for Max Width it is about 700 which
emphasizes the weak adaption of the model concerning
the shape indicators.

Table 3: Statistical data for Fig. 5.

MEAN SD CV

Area (µm2) 403.515 319.725 0.794
Perimeter (µm) 75.075 31.185 0.415
Isoper. Quotient 0.787 0.109 0.138
Min Width (µm) 18.375 8.295 0.451
Max Width (µm) 28.56 11.445 0.401
Aspect Ratio 0.644 0.127 0.198

Table 4: Statistical data for simulated tessellations
(50 replications) for (L-AREA, D-GAUSS), DRECT,
bellip = 0.1, σ = 0.1, tSTOP = 500, tGAUSS = 2000,
window side a = 1.

MEAN SD CV

Area 0.0005 0.0004 0.7896
Perimeter 0.0998 0.0423 0.4235
Isoper. Quotient 0.5759 0.1682 0.2921
Min Width 0.0168 0.0079 0.4688
Max Width 0.0411 0.0191 0.4648
Aspect Ratio 0.4385 0.1689 0.3853

DISCUSSION

By starting with the pure mathematical STIT
tessellation model, we have suggested some
modifications to make the model more flexible – and
introduced some parameters which can be varied and
interpreted in order to adapt to data of real crack
patterns. The simulation tool provided in León (2019)
allows for experiments by a user who wants to check
the applicability of the model.
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Fig. 7: Example of a simulated tessellation with (L-
AREA, D-GAUSS), DRECT, bellip = 0.1, σ = 0.1,
tSTOP = 500, tGAUSS = 2000, window side a = 1.

The new models enable good results concerning
the important statistical parameter CV(A), the
coefficient of variance of the cell areas. On the
other hand, there are several obvious features of real
crack patterns which are not yet understood, e.g., in
many crack patterns, a dividing line tends to meet
at right angles with the boundary of the cell, rather
than at small angles. This motivates future work
aimed at feasible parametric models which allow
for a reasonably good approximation of actual crack
patterns.
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