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ABSTRACT

The integral of a smooth function with bounded support over a set with finite perimeter in Euclidean space Rd

is estimated using a periodic grid in an isotropic uniform random position. Extension term in the estimator
variance is proportional to the integral of the squared modulus of the function over the object boundary and
to the grid scaling factor raised to the power of d + 1. Our result generalizes the Kendall-Hlawka-Matheron
formula for the variance of the isotropic uniform systematic estimator of volume.
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INTRODUCTION

Estimation in spatial statistics and stereology is
based on geometric sampling of spatial variables.
Systematic sampling is preferable to simple random
sampling for its efficiency. According to the Kendall-
Hlawka-Matheron formula (Kendall, 1948; Hlawka,
1950; Matheron, 1965), the extension term in an
asymptotic expansion of the variance of a volume
estimate using a point grid at an isotropic uniform
random (IUR) position with respect to the grid scaling
factor is proportional to the surface area of the object
and to the power function of the grid scaling factor.
The formula is used in the case of specific volume
measurements (Gundersen and Jensen, 1987) and
evaluates the mean variance of the volume estimate of
a random set (Kieu and Mora, 2004). The formula can
be generalised to isotropic sampling using an arbitrary
regular grid (Janáček, 2006; Kieu and Mora, 2006).
The grid is, mathematically speaking, a periodic Borel
σ -finite measure, usually the Hausdorff measure, e.g.
the counting measure on the points or H 1 on the lines.

We examined the variance of the estimator for the
integral of a function f over K ⊂ Rd ,

�

K

f (x)dx,

obtained by replacing the ordinary Lebesque measure
by a randomly rotated and shifted periodic Borel σ -
finite measure.

We prove the generalised Kendall-Hlawka-
Matheron formula for variance of an integral estimator

using a grid in isotropic uniform random position
provided that K has finite perimeter and f is a
smooth function with bounded support in Theorem
4. The asymptotics in the generalised formula is
established using harmonic analysis and second
Wiener’s Tauberian theorem in Theorem 1, whose
proof is from (Wiener, 1933, Theorem 21) modified
to isotropic situation in arbitrary dimension as in
(Janáček, 2008, Lemma 2.5). The constant in the
asymptotics expansion is obtained by the theory of
functions with bounded variation (Ambrosio, 2000)
in Theorem 3 in a similar way as in (Galerne, 2011,
Theorem 14).

VARIANCE OF THE ESTIMATOR

Periodicity in the Euclidean space Rd is defined
based on periods being elements of the point lattice
T = AZd , where Zd are the points with integral
coordinates and A ∈ Rd×d is a regular matrix. We
define the fundamental region of T as FT = A [0,1)d ,
its volume being det A. The spatial intensity of T is
α = (det A)−1. The lattice dual to T is T∗ = A−1Zd .

The σ -finite measure µ on Rd is a T-periodic
measure if µ (K + x) = µ (K) for all x ∈ T and any
Borel set K. Let λ be the intensity of µ equal to
αµ (FT).

The IUR position of the grid is parametrized
by the fundamental region of the lattice of periods
and by the rotations. Application of d−dimensional
harmonic analysis yields the asymptotics of the
variance presented in Theorem 1. The basic notions
and properties concerning the Fourier transform and
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convolution of functions are summarized as follows
and can be found in Bochner (1949).

For f ∈ L1
(
Rd
)

the Fourier transform F f is the
function of frequency ξ

F f (ξ ) =
�

Rd

f (x)exp(−2πixξ )dx.

The coefficient −2πi is replaced by 2πi in the
inverse Fourier transform.

For reflection f̂ (x) = f (−x), the Fourier transform
is the complex conjugate F f̂ = F f .

The convolution of f1 and f2 ∈ L1
(
Rd
)

is defined
by

f1 ? f2 (x) =
�

Rd

f1 (x− y) f2 (y)dy.

We have F ( f1 ? f2) = F f1F f2 by convolution
theorem for Fourier transform.

The rotation M ∈ SOd (special orthogonal group)
of a function f is defined as

M f (x) = f
(
M−1x

)
.

The Fourier transform of a spherically symmetric
function f (i.e. M f = f for any M) is spherically
symmetric. Using the same notation for a spherically
symmetric function and its radial function ( f (x) =
f (‖x‖) and F f (ξ ) = F f (‖ξ‖)), we have
rd−1 f (r) ∈ L1 (R+) and the radial function of F f
is the Hankel transform of the radial function of f :

F f (ρ) = 2πρ
1− d

2

∞�

0

r
d
2 Jd

2−1 (2πρr) f (r)dr, (1)

where Jd
2−1 is Bessel function of first kind.

For f ∈ L1
(
Rd
)
∩L2

(
Rd
)

the covariogram g f is
the function

g f (x) =
�

Rd

f (y+ x) f (y)dy.

Obviously g f (−x) = g f (x). The Parseval theorem
and the convolution theorem yield Fg f = |F f |2 ∈
L1
(
Rd
)

and g f = F−1Fg f by the Fourier inversion
theorem.

The isotropic covariogram g f of f is the real
function

g f (‖x‖) =
�

SOd

gM f (x)d p(M) ,

where p(M) is the invariant probabilistic measure on
SOd . Then

Fg f (‖ξ‖) =
�

SOd

FgM f (ξ )d p(M) =

=

�
SOd

|FM f |2 (ξ )d p(M) .

Fg f is nonegative, ρd−1Fg f (ρ) ∈ L1 (R+) and

FFg f = g f . (2)

Harmonic analysis of periodic measures leads to
Fourier series. The Fourier coefficient of a T-periodic
σ -finite Borel measure µ with index ξ ∈ T∗ is

mξ = α

�

FT

exp(−2πixξ )dµ (x) .

The convolution of a σ -finite Borel measure µ in
Rd with a function f ∈ L1

(
Rd
)

is

f ?µ (x) =
�

Rd

f (x− y)dµ (y) .

Let µ be a T-periodic measure and let f ∈
L1
(
Rd
)
∩ L2

(
Rd
)
. Then the convolution is a

periodic function and its Fourier series in the space
L2
(
FT,αλ d

)
is

f ?µ (x) = ∑
ξ∈T∗

mξ F f (ξ )exp(2πixξ ) .

Let J f =
�
Rd f (y)dy. Then the mean and variance

of f ?µ are

α
�

FT
f ?µ (x)dx = m0F f (0) =
= λ

�
Rd f (x)dx = λJ f

(3)

and
α
�

FT

∣∣ f ?µ (x)−λJ f
∣∣2 dx =

= ∑
ξ 6=0
ξ∈T∗

∣∣mξ

∣∣2 |F f (ξ )|2 ,
(4)

respectively. Eq. 4 follows from the Plancherel
theorem for Fourier series in Hilbert space (Rudin,
1987, Theorem 4.18).

Let µ be a T-periodic measure and u ∈ R+. We
define the uT-periodic measure µu by the formula
µu (K) = ud µ

(
u−1K

)
. The Fourier coefficient of µu

with index u−1ξ , ξ ∈ T∗, is mξ .
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We define the coefficient Cµ of a T-periodic
measure µ as

Cµ =
1

2π2dκd

ξ 6=0

∑
ξ∈T∗

∣∣mξ

∣∣2
‖ξ‖d+1 , (5)

where κd = π
d
2 Γ
(d

2 +1
)−1

is the volume of the unit
ball in Rd .

Theorem 1. Let f ∈ L1
(
Rd
)
∩ L2

(
Rd
)

and
let g′f (0+), the right derivative of its isotropic
covariogram in 0, exists and is different from 0, let µ

be a T-periodic measure and u > 0. Then the variance
of M̂ f ?µu (x), where x and M are uniform random, is

�

SOd

α

�

FT

∣∣∣M̂ f ?µ
u (x)−λJ f

∣∣∣2 dxd p(M) =

=Cµ

(
− dκd

κd−1
g′f (0+)

)
Φ f
(
u−1)ud+1,

where J f =
�
Rd f (y)dy and Φ f is a nonnegative

function on R+ such that limx→+∞
1
x

� x
0 Φ f (y) dy = 1.

Proof. The mean value of M̂ f ? µu (x) is
λ
�
Rd f (y)dy = λJ f for any M ∈ SOd by Eq. 3. The

average of Eq. 4 with respect to rotations is
�

SOd

α

�

FT

∣∣∣M̂ f ?µ
u (x)−λJ f

∣∣∣2 dxd p(M) =

=
ξ 6=0

∑
ξ∈T∗

∣∣mξ

∣∣2 Fg f
(
u−1 ‖ξ‖

)
.

We set

Ψ f (y) =−
2π2κd−1yd+1

g′f (0+)
Fg f (y) ,

Φ f (x) = σ
−1
T

ξ 6=0

∑
ξ∈T∗

cξ Ψ f (‖ξ‖x) ,

cξ =
∣∣mξ

∣∣2 ‖ξ‖−d−1 , σT =
ξ 6=0

∑
ξ∈T∗

cξ ,

L(u) =
1

2π2κd−1

(
dκd−2πu1− d

2 Jd
2−1 (2πu)

)
.

Then the variance is

ξ 6=0

∑
ξ∈T∗

∣∣mξ

∣∣2 Fg f
(
u−1 ‖ξ‖

)
=

=
−g′f (0+)

2π2κd−1

(
ξ 6=0

∑
ξ∈T∗

∣∣mξ

∣∣2
‖ξ‖d+1 Ψ f

(
u−1 ‖ξ‖

))
ud+1 =

=
−g′f (0+)

2π2κd−1

(
ξ 6=0

∑
ξ∈T∗

∣∣mξ

∣∣2
‖ξ‖d+1

)
Φ f
(
u−1)ud+1 =

and Eq. 5 yields

=Cµ

(
− dκd

κd−1
g′f (0+)

)
Φ f
(
u−1)ud+1.

It follows from the definition of derivative that

−g′f (0+)

2π2κd−1
=

1
2π2κd−1

lim
h→0+

1
h

(
g f (0)−g f (h)

)
=

and by the use of Eq. 1 and 2 we have

= lim
h→0+

1
h

∞�

0

L(hρ)ρ
d−1Fg f (ρ) dρ =

and applying (the following) Theorem 2 to the function
ρd−1Fg f (ρ) we obtain finally

= lim
R→+∞

1
R

R�

0

ρ
d+1Fg f (ρ) dρ,

hence limx→+∞
1
x

� x
0 Ψ f (y) dy = 1 and 0 ≤ Ψ f . The

proof of limx→+∞
1
x

� x
0 Φ f (y) dy = 1 and 0 ≤ Φ f is

straightforward.

Let M1 (R) be the normed space of all continuous
functions f such that

∞

∑
i=−∞

max{| f (x)| , i < x < i+1}< ∞.

Wiener’s second Tauberian theorem (Wiener,
1933, Theorem 5) says: Let ψ have uniformly bounded
variation on unit intervals in R, N ∈M1 (R), FN (τ) 6=
0 for each τ ∈ R and

lim
η→∞

∞�

−∞

N (η− t) dψ (t) = aFN (0) .

Then

lim
η→∞

∞�

−∞

f (η− t) dψ (t) = aF f (0)

for every f ∈M1 (R).
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Theorem 2. Let f (r)≥ 0 and f ∈ L1
loc (R+). Then

lim
R→∞

1
R

R�

0

r2 f (r) dr = lim
h→0+

1
h

∞�

0

L(hr) f (r) dr,

where

L(u) = π
− 3

2 Γ

(
d +1

2

)(
1

Γ
(d

2

) − Jd
2−1 (2πu)

(πu)
d
2−1

)
,

whenever one of the limits exists.

Proof. We may set f = 0 in (0,1) according to the
theorem on monotone convergence.

By the substitution r =exp(t) and defining

R = exp(η) = 1
h , r2 f (r) = ϕ (t) ,

N1 (s) = I{s|s>0} exp(−s) ,

N2 (s) = exp(s)L(exp(−s)) ,

ψ (t) =

t�

0

ϕ (s) ds,

we obtain an equivalent formulation of the theorem:

lim
η→∞

∞�

−∞

N1 (η− t) dψ (t) = lim
η→∞

∞�

−∞

N2 (η− t) dψ (t) .

whenever at least one of the two limits exists. We have
Ni (η) > 0 for 0 ≤ η ≤ 1 and i = 1,2, thus, if one of
the above limits exists, then

limsup

n+1�

n

dψ (s)< ∞

and also
n+1�

n

dψ (s)< M < ∞,

i.e. the variation of ψ on unit intervals is bounded by
M < ∞.

We will evaluate the Fourier transform of kernel
N2:

FN2 (τ) =

∞�

0

L(u)u2πiτ−2du.

Using
�

t−νJν+1 (t)dt =−t−νJν (t) we get

=
2√
π

Γ

(
d +1

2

) ∞�

0

u2πiτ−2

u�

0

(πs)1− d
2 Jd

2
(2πs)dsdu=

and integration by parts gives

=
2Γ
(d+1

2

)
√

π (1−2πiτ)

−
u2πiτ−1

u�

0

Jd
2
(2πs)

(πs)
d
2−1

ds

∞

0

+

+π
1−2πiτ

∞�

0

Jd
2
(2πu)

(πu)
d
2−2πiτ

du

 .

The first term in the parentheses is zero, because of
l’Hospital rule and asymptotics of Bessel function.
From the formula

�
∞

0
taJν (2t)dt =

1
2

Γ

(
ν +a+1

2

)
Γ

(
ν−a+1

2

)−1

,

valid if Re a < 1
2 , Re a+ν >−1, it follows that

FN2 (τ) =
π−2πiτ− 1

2

1−2πiτ
Γ
(d+1

2

)
Γ
(1

2 +πiτ
)

Γ
(d+1

2 −πiτ
) .

Now it is easy to see that FN2 (0) = 1 and FN2 (τ) 6=
0 for τ ∈R, because Gamma function has no roots and
all its poles are nonpositive integers.

The function N1 is not continuous (thus N1 /∈
M1 (R)). We set

N1,ε (t) =
1
ε

� t+ε

t
N1 (s) ds

for ε > 0. Then N1,ε ∈M1 (R),

FN1,ε (τ) =
exp(2πiτε)−1

2πiτε

1
1+2πiτ

has no real root and FN1,ε (0) = 1. Thus the limits
are equal for N1,ε and N2 if one of the limits exists by
second Wiener’s Tauberian theorem.

It follows from the obvious inequalities

1− exp(−ε)

ε
N1 (t)≤ N1,ε (t)≤

exp(ε)−1
ε

N1 (t)

that

ε

exp(ε)−1
N1,ε (t)≤ N1 (t)≤

ε

1− exp(−ε)
N1,ε (t) ,

and because ψ is nondecreasing the limits in the
statement of the theorem with N1 and N2 are equal, if
one of the limits exists.
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Let K ⊂ Rd be a measurable set. The perimeter
of a measurable set K ⊂ Rd is the variation of its
characteristic function IK (Ambrosio, 2000, Definition
3.35). If Per(K) is finite then the gradient of the
characteristic function IK is the vector Radon measure
DIK in the sense of distributions (Ambrosio, 2000,
Theorem 3.36). We have the polar decomposition
DIK = ∇IK |DIK |, where the vector function ∇IK is the
inner normal and the positive measure |DIK | is the
variation of DIK (Ambrosio, 2000, Corollary 1.29).

Let the reduced boundary ∂ ∗K be the set of points
where the normal to the set K exists (Ambrosio,
2000, Definition 3.54). Then |DIK | = H d−1|∂ ∗K
(Ambrosio, 2000, Theorem 3.59), where H d−1 is the
Hausdorff measure.

The covariogram of f IK is

g f IK (x) =
�

K∩K−x

f (y+ x) f (y)dy

and the corresponding isotropic covariogram is

g f IK (‖x‖) =
�

SOd

gM( f IK) (x)d p(M) .

Theorem 3. Let K ⊂ Rd be a measurable set. If
Per(K)< ∞ and f ∈ C1

c
(
Rd
)
, then

g′f IK (0+) =−κd−1

dκd

�
∂ ∗K
| f |2 (x)dH d−1 (x) .

Proof. Let u ∈ Sd−1 and ε > 0, then

g f IK (−εu)−2g f IK (0)+g f IK (εu)
2ε

=

=− 1
2ε

�

K∩K−εu

| f (x)− f (x+ εu)|2 dx−

− 1
2ε

�

K\K−εu

| f (x)|2 dx− 1
2ε

�

K−εu\K

| f (x+ εu)|2 dx =

| f |2 is a Lipschitz continuous function, thus the first
integral converges to 0 and the function in the last one
can be shifted by εu, so that

=− 1
2ε

�

K\K−εu

| f (x)|2 dx− 1
2ε

�

K−εu\K

| f (x)|2 dx+o(ε) .

We have

1
ε

�

K\K−εu

| f |2 (x)dx− 1
ε

�

K−εu\K

| f |2 (x)dx =

=
1
ε

�

K

| f |2 (x)−| f |2 (x− εu)dx =

=
1
ε

�
K

d

∑
i=1

ui
∂

∂xi

� 0

−ε

| f |2 (x+ tu)dt dx =

=

�

Rd

1
ε

0�

−ε

| f |2 (x+ tu)dt u ·∇IK (x)d |DIK |(x)

where the last equality follows from the Gauss-
Green theorem (Ambrosio, 2000, Theorem 3.36). The
integral converges to�

Rd

| f |2 (x) u ·∇IK (x)d |DIK |(x)

because | f |2 is uniformly continuous. Further,
the integrals in the Gauss-Green equality above
provide us with two expressions for the measure
ε−1L d |(K \K− εu) − ε−1L d |(K− εu\K) where
L d is the Lebesgue measure. The variance of this
measure has density equal to ε−1 with respect to L d

on the union of the two disjoint sets that form the
Hahn decomposition of the measure (Ambrosio, 2000,
Exercise 1.1). Convolution of the ε−1 multiple of the
Hausdorff measure on the interval ε−1H 1| 〈0,εu〉
with either the positive variation or with the negative
variation of the directional derivative u ·∇IK |DIK | form
another decomposition of the measure. By the use of
minimality of the Hahn decomposition and of | f |2 ≥ 0
we obtain

1
ε

�

K\K−εu

| f |2 (x)dx+
1
ε

�

K−εu\K

| f |2 (x)dx≤

≤
�

Rd

1
ε

0�

−ε

| f |2 (x+ tu)dt |u ·∇IK (x)|d |DIK |(x)

and both expressions converge to�

Rd

| f |2 (x) |u ·∇IK (x)|d |DIK |(x) ,

the second one because of the uniform continuity
of | f |2 and the first one because of the lower
semicontinuity of the variation with respect to locally
weak∗ convergence (Ambrosio, 2000, Proposition
1.62).

Finally, by the use of the Hausdorff measure on the
reduced boundary (Ambrosio, 2000, Theorem 3.59)
we obtain the limit of the difference quotient

−1
2

�

∂ ∗K

| f |2 (y) |u ·∇IK (y)| dH d−1 (y) .
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and the statement of the theorem follows by averaging
the integral over u ∈ Sd−1 using the identity

1
dκd

�

Sd−1

|u · v|dH d−1 (u) = 2κd−1 ‖v‖ .

Theorem 4. Let K ⊂ Rd be a measurable set with
Per(K)< ∞. Then

i)
�

SOd

α

�

FT

|µu (MK + x)−λ |K||2 dxd p(M) =

=CµPer(K)ΦK
(
u−1)ud+1,

where |K| is volume of K,

ii) if f ∈ C1
c
(
Rd
)
, then

�

SOd

α

�

FT

∣∣∣M̂ f IK ?µ
u (x)−λJ f

∣∣∣2 dxd p(M) =

=Cµ

(�
∂ ∗K
| f |2 (x)dH d−1 (x)

)
Φ f IK

(
u−1)ud+1,

iii) and if f1, f2 ∈ C1
c
(
Rd
)
, then

�

SOd

α

�

FT

(
M̂ f1IK ?µ

u (x)−λJ f1

)
·

·
(

M̂ f2IK ?µu (x)−λJ f2

)
dxd p(M) =

=Cµ

(
Re

�
∂ ∗K

f1 (x) f2 (x)dH d−1 (x)
)
·

·Φ f1IK , f2IK
(
u−1)ud+1,

where Φ· are nonnegative functions on R+ such that
limx→+∞

1
x

� x
0 Φ· (y) dy = 1.

Proof. i) follows from Theorem 1 and from the
equation−dκdg

′
K (0+)= κd−1Per(K) (Galerne, 2011,

Theorem 14).

ii) Theorem 1 with the value of the right derivative
of the isotropic covariogram in 0 obtained in Theorem
3 proves the statement.

iii) The cross-covariogram of functions f1IK and
f2IK is

g f1IK , f2IK (x) =
�

K∩K−x

f1 (y+ x) f2 (y)dy

and the corresponding isotropic cross-covariogram is
defined as

g f1IK , f2IK (‖x‖) =
�

SOd

gM( f1IK),M( f2IK) (x)d p(M) .

Obviously,

g f1± f2IK = g f1IK ±2g f1IK , f2IK +g f2IK .

From
�

∂ ∗K
| f1 (x)± f2 (x)|2 dH d−1 (x) =

=

�
∂ ∗K
| f1|2 (x)dH d−1 (x)±

±2Re
�

∂ ∗K
f1 (x) f2 (x)dH d−1 (x)+

+

�
∂ ∗K
| f2|2 (x)dH d−1 (x)

and by the use of Theorem 3 we obtain

−dκdg
′
f1IK , f2IK (0+) =

= κd−1Re
�

∂ ∗K
f1 (x) f2 (x)dH d−1 (x) .

The statement then follows from ii) applied to
( f1± f2) IK .

DISCUSSION

We obtained Φ≥ 0 and limx→+∞
1
x

� x
0 Φ(y) dy = 1

in Theorem 4, which enables us to obtain reasonable
approximation of the variance replacing Φ by 1.
The resulting formula can be used for selecting
the proper sampling density in optimization of the
sampling design efficiency (Gundersen and Jensen,
1987). Theorem 4 can be also used in cases when f is
smooth and K is a bounded set with a finite perimeter.

We were not able to prove, that Φ is bounded, i.e.
that the error of the approximation is O

(
ud+1

)
, u→

0+, for a general set with finite perimeter. This can be
proved easilly, if the Hankel transform of the isotropic
covariogram of the set or of the function restricted
on the set is O

(
ρ−d−1

)
, ρ → +∞. The asymptotics

then could be prooved more easilly using the first
Wiener’s Tauberian theorem (Janáček, 2008). Isotropic
covariograms of bounded convex sets or of C1.5 sets
have this property (Brandolini et al., 2003).
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