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ABSTRACT 

The well-documented relation between bone mineral density (BMD) and bone compression strength 
constitutes the basis for osteoporosis diagnostics and the assessment of fracture risk. Simultaneously, this 
relation demonstrates a considerable scatter of results as bones of identical mineral density may have 
significantly different properties. The experimentally confirmed theorem that two materials or tissues of 
identical microstructure have identical properties leads to the evaluation of various quantitative stereolog-
ical parameters (also referred to in biomedicine as histomorphology). These parameters, obtained from 
analysis of 2D or 3D images, have been used in numerous attempts to explain changes in bone strength. 
Although numerous correlation dependencies, often with high correlation coefficients, were evaluated, we 
do not know which parameters are worth evaluating, and there is no physical interpretation of these 
relations. An extended statistical analysis was accomplished on the basis of analysis of 3D images from 
23 lumbar (L3) vertebrae scanned with micro-CT and the results of subsequent compression tests. A new 
parameter called SDF (structure destruction factor) was proposed in order to characterise the quality of 
3D trabecular structures, and its significance was demonstrated. The final correlation function, which uses 
only three stereological parameters, made it possible to predict compression strength with considerable 
precision. The estimated values correlated very well with the apparent values (correlation coefficient 
r=0.96). Finally, the stereological parameters most suitable for characterisation of bone compression 
strength were chosen and a mechanism responsible for the changes in mechanical properties was pro-
posed. The results obtained defined the necessary improvements in diagnostic techniques that would 
allow for more efficient quantitative microstructure evaluation and guidelines on how to improve treat-
ment of patients with weakened bones. 

Keywords: 3D image analysis, bone structure, compression strength, histomorphometry, osteoporosis, 
spine. 

INTRODUCTION  

Bone mineral density (BMD) is a good predictor of 
the mechanical properties of bones. However, 
numerous fractures are observed in patients with higher 
than average BMD for their age. Closer analysis 
showed that bones with the same BMD could 
significantly differ in geometry, structure, and 
properties (Kazakia et al, 2011). So, variation in the 
mechanical properties of bones seems to be a 
consequence of microstructural differentiation (Ulrich 
et al, 1999). Consequently, this opens a discussion on 
the choice of proper (stereological) parameters that 
quantify bone microstructure and the methodology of 
appropriate measurements. One of the most important 

difficulties in bone structure quantification is the lack 
of a so-called gold standard. In other words, we have 
no method that gives widely accepted and sufficiently 
precise results that can be used as a reference for other 
methods. Let us look at some works devoted to this 
problem. 

In some works (Mullender et al 2005, Khoo et al 
2005) various parameters were evaluated and compared 
within different groups of patients: for example, males 
and females, osteoporotic and healthy. Unfortunately, 
the mechanical properties of vertebrae remain unknown 
and therefore these results cannot be used to predict 
them. Consequently, they cannot be applied for 
objective in vivo judgement of the bone quality of a 
given patient.  
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Shahtaferi (2007) examined flat two-dimensional 
sections from biopsies of the iliac crest of young (mean 
age 30) and elderly (mean age 60) men with 
osteoporosis. The measurements were performed 
automatically. However, no precise information 
concerning the equipment and software used was 
given. The measurements showed that almost all the 
parameters (trabecular bone volume fraction, trabecular 
bone specific surface, mean trabecular thickness) as 
well as the number of end points and nodes per unit 
area were statistically more significant in young men’s 
bones. Consequently, mean trabecular separation was 
significantly higher in elderly men’s bones.  

Unfortunately, the aforementioned paper gives no 
information about the relations between the various 
parameters. We have only the mean values and ranges 
for two groups of significantly different ages. In 
addition, there is no critical stereological analysis of 
the results. For example, according to the results 
presented, the mean trabecular length is ten times 
higher in young bones, which is practically impossible. 
The lack of precise information on the measurement 
methodology precludes deeper discussion and analysis 
of the results. 

Shipilov et al (2013) reported an extensive study 
on 95 young volunteers (59 females and 36 males aged 
between 16 and 30 years) in which they tried to explain 
how impact loading influences bone microstructure, 
which is a key determinant of bone strength. The in 
vivo tests of the distal radius and distal tibia were 
performed using high-resolution peripheral quantitative 
computed tomography (QCT) with a resolution of 82 

m. Three groups of athletes who practised alpine 
skiing (high-impact loading), soccer (medium-impact 
loading) and swimming (low-impact loading) were 
analysed and compared with a control group that was 
not active in sport. 

The results clearly demonstrated that sport activity, 
especially related to high-impact loading, influenced 
bone microstructure and compression strength when 
evaluated using FEA (the finite elements method). An 
increase in bone density, cortical thickness, and failure 
stress was observed. Moreover, these differences were 
observed mostly in the distal tibia, which is heavily 
loaded in sporting activity associated with high-impact 
loading. However, this work gives no answer on how 
to predict bone strength on the basis of the 
histomorphometric parameters of the bone 
microstructure. 

Interesting results can be found in the work by 
Thomsen et al (2005), in which the problem of 
vertebral bone strength prediction on the basis of 

histomorphometric (i.e. stereological) analysis of 
vertebral bone was examined. The second and third 
vertebral bodies (L2 and L3) were used for 
histomorphometry and destructive compression tests, 
respectively. The test materials covered a wide age 
range (19–96 years), both women (21) and men (24). 
Statistically significant correlations were found 
between trabecular bone volume fraction (BV/TV), 
trabecular number (Tb.N) or trabecular separation 
(Tb.S), and the compression strength of vertebral 
bodies. The correlation coefficients for these relations 
were evaluated as 0.84, 0.86 and -0.86, respectively. 
Correlations with other histomorphometric parameters 
were also statistically significant, but with lower 
correlation coefficients. Similar correlation coefficients 
were reported for correlations with bone density, 
evaluated by means of quantitative computed 
tomography (QCT), peripheral QCT (pQCT), and dual-
energy X-ray absorptiometry (DEXA). 

A similar study was reported by Beuf et al (2001). 
They examined fourteen L3 lumbar vertebrae obtained 
from cadavers (aged 22–76 years). The results of high-
resolution MRI structural measurements and bone 
mineral density (BMD) were compared with the results 
of mechanical tests. Good correlations were reported 
between age, BMD, morphological parameters, and the 
results of mechanical tests. The absolute correlation 
coefficients were in the range 0.79–0.91. In addition, 
the application of a stepwise multiple regression model 
allowed for even better correlations when BMD or 
volume fraction was coupled with the mean intercept 
length. However, the correlation coefficient never 
exceeded 0.92. 

An improvement in this correlation with mechani-
cal properties was reported by Ulrich et al (1999) after 
combining several structural parameters. They obtained 
very high regression coefficients (up to 0.96) after 
taking into account volume fraction, trabecular spacing, 
and mean intercept length. However, one should take 
into consideration that they analysed data sets covering 
only bone structures that were clearly osteoporotic. 

Let us summarise this brief review. The conclu-
sions of all the works discussed above are, in fact, in 
good agreement; they might be of a more qualitative or 
more quantitative character, but the general trend is 
always the same. A good correlation between BMD 
and mechanical properties constitutes the background 
for the use of densitometry as the main tool for 
osteoporosis diagnostics. Unfortunately, numerous 
cases have proved that using BMD as the only 
parameter for estimation of compression strength can 
either overestimate or underestimate bone strength 
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Table 2. Results of experiments 
 

L.p.  Rc,  Age  BV/TV  Tb.Th  Tb.Sp  Tb.Pf 
Bran‐
ches 

Junc‐
tions 

Average 
branch 
length 

unit   MPa   year  ‐  mm  mm  ‐  1/mm3  1/mm3  mm 

1  8.08  54  0.1166  0.2029  1.0785  0.3439  5.8627  3.4724  0.4544 

2  18.81  26  0.2341  0.2094  0.7913  0.1125  10.2597  5.9767  0.3833 

3  7.31  55  0.1603  0.1762  0.8508  0.2806  11.1857  6.5363  0.3717 

4  18.61  25  0.2495  0.2247  0.8415  0.1131  9.4670  5.5925  0.3736 

5  12.27  54  0.1704  0.1956  0.7951  0.3046  9.3460  5.5847  0.3845 

6  16.21  45  0.1959  0.2066  0.8528  0.1756  7.8127  4.5305  0.3985 

7  6.50  77  0.0727  0.1875  1.2737  0.5187  3.1667  1.8487  0.4344 

8  14.76  45  0.2181  0.2153  0.6879  0.2822  8.0648  4.7760  0.3523 

9  10.87  82  0.1156  0.2382  1.1200  0.3909  2.4981  1.4564  0.4439 

10  8.91  48  0.1459  0.2022  0.9893  0.2620  6.0010  3.5627  0.4378 

11  10.52  52  0.1392  0.1874  0.8702  0.3689  8.3790  4.8488  0.3877 

12  7.13  70  0.0956  0.2123  1.3613  0.3446  3.2275  1.9075  0.4935 

13  14.10  31  0.2139  0.2161  0.8665  0.1653  9.8098  5.8136  0.3843 

14  6.01  59  0.1061  0.2087  1.0807  0.4010  5.2762  3.1694  0.4590 

15  6.36  85  0.1022  0.2054  1.3677  0.3038  4.0528  2.4041  0.4520 

16  7.11  58  0.1065  0.2002  1.0568  0.4026  7.8878  4.5475  0.4359 

17  6.26  75  0.0837  0.1798  1.1577  0.5220  6.7055  3.8857  0.4117 

18  10.92  56  0.1546  0.2543  1.0252  0.2788  4.7831  2.8448  0.4509 

19  16.32  42  0.1957  0.1982  0.8219  0.1895  9.6873  5.6839  0.3953 

20  6.48  89  0.0938  0.1843  1.1621  0.4056  5.8117  3.4954  0.4466 

21  9.55  61  0.1410  0.2132  1.0205  0.3022  9.2607  5.4136  0.4130 

22  9.21  59  0.1407  0.1949  1.0492  0.2516  6.8481  4.0794  0.4340 

23  8.57  62  0.1220  0.1924  1.0340  0.3293  6.0651  3.6250  0.4429 

 

 

Linear regression is not a good choice in this case 
as practically all the parameters (including sport 
achievements) tend to (approximately) monotonically 
decrease with age but almost never exceed a constant 
final value. Consequently, approximation using the 2nd 
degree multinomial would be better but still simple: 

𝑅 0.0036 ∙ 𝑎𝑔𝑒 0.5875 ∙ 𝑎𝑔𝑒 31.809
      (2) 

 

Equation (2), illustrated in Fig. 2 by the solid line, 
is also statistically significant and gives better 
approximation than equation (1), as is demonstrated by 
the results of error analysis shown in Table 3. 

Application of a nonlinear function slightly 
improved the correlation, but the errors were still very 
high. So, equations (1) and (2) are insufficient for 
application as predictors of compression strength. One 
should remember that there is no physical relation 
between time (more precisely, the age of the patient) 
and the compression strength of the spine. Changes 
observed in compression strength are induced by 
changes in the microstructure of vertebrae. This 
microstructure, in turn, evolves with time, but the rate 
and range of these changes are significantly different in 
various patients.  
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the case of the degradation factor (or coefficient). This 
may suggest that other factors (for example, physical 
activity) may affect the structure of vertebrae. 

 

Fig. 10. Effect of age on various structural parameters. 
Their values were normalised for better comparison of 
changes (min=0, max=1). 

 

Only some parameters measured and presented in 
Table 2 were used for analysis. This was a result of 
PCA (Principal Component Analysis), which proved 
that the rest of the parameters can be omitted as they 

have no significant effect on the estimation of 
compression strength. This part of the analysis is not 
documented in this paper. However, this is an 
important observation as it demonstrates the role of 
careful preparation of the experiment. Usually, 
collecting as many quantitative parameters as possible 
does not lead to good results; it is more effective to 
select the limited list of parameters which describe a 
model of the process. Such a practice should be 
recommended in all quantitative analyses using 
stereological and image analysis methods. 

The results presented in this paper allowed 
evaluation of several correlation equations that provide 
an insight into the role of microstructure in defining the 
compression strength of vertebrae. Unfortunately, all 
these equations can only be interpreted qualitatively. In 
other words, they have no value as predictive tools, 
especially for in vivo patients. The reasons for this are 
at least twofold. 

First, microtomographs could not be used for the 
in vivo experiments due to the size of our specimens. 
The resolution of tomographs used for diagnostic 
purposes is too low to obtain sufficiently precise 
microstructural information. All the vertebrae analysed 
in this paper were also examined with the use of 
classical medical tomography, but the microstructure 
recorded was not suitable for any successful analysis. 
Therefore, these results are not included in this paper. 

Second, even the resolution of microtomography is 
insufficient for quantitative analysis that is sufficiently 
precise to build good predictive models. The voxel size 
in the images used in this experiment was 34.6 m. 
Consequently, the diameter of a single branch was 
usually 6 voxels. All the images were recorded with 
identical parameters, and the same image processing, 
including binarization, was applied. The slightly 
different apparatus or parameters used in microtomog-
raphy and subtle variations in image processing may 
lead to a seemingly small change in branch diameter, 
for example, only 2 voxels (only a single voxel 
symmetrically on each side of the object). 
Consequently, the average branch diameter will be 
equal to 8 voxels and the measured volume fraction 
will more than double. Such results would be 
completely incomparable. To make things worse, we 
have no “gold standard” for verification of the results 
of detection. In other words, we have no alternative 
method which gives results that are commonly 
accepted as correct and exact and can be applied in 
checking the correctness of image processing. 
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CONCLUSIONS 

The compression strength of vertebral bodies is an 
effect of their microstructure. Some changes in this 
microstructure are typical in patients of different ages, 
therefore a rough correlation between age and 
compression strength is observed. The significantly 
better predictive potential of microstructural data 
indicates that age is not a good predictor of the 
mechanical properties of the spine. 

Compression strength of vertebral bodies is 
predominantly affected by the volume fraction of the 
vertebrae. However, an important role is played by the 
spatial structure of branches; there is possibly an 
optimal microstructure of this structure.  

Only a very limited number of microstructural 
parameters is worth analysing. In this study it was 
demonstrated that the application of only three of them 
is sufficient: volume fraction, density of nodes and 
degradation factor. The list of measured parameters 
should be carefully selected prior to experiments as this 
can save time and money during research and further 
simplify analysis. 

Quantitative microstructure analysis gives 
important indicators which are decisive for the 
mechanical properties of bone. Unfortunately, the 
limited resolution and specimen size of the currently 
available microtomography devices does not allow 
very precise quantitative prediction of the properties 
and the risk of fracture of bones. 
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