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ABSTRACT 

Advanced driver assistance systems (ADAS) have been developed to automate and modify vehicles for 
safety and better driving experience. Among all computer vision modules in ADAS, 360-degree surround 
view generation of immediate surroundings of the vehicle is very important, due to application in on-road 
traffic assistance, parking assistance etc. This paper presents a novel algorithm for fast and computationally 
efficient transformation of input fisheye images into required top down view. This paper also presents a 
generalized framework for generating top down view of images captured by cameras with fish-eye lenses 
mounted on vehicles, irrespective of pitch or tilt angle. The proposed approach comprises of two major 
steps, viz. correcting the fish-eye lens images to rectilinear images, and generating top-view perspective of 
the corrected images. The images captured by the fish-eye lens possess barrel distortion, for which a non-
linear and non-iterative method is used. Thereafter, homography is used to obtain top-down view of 
corrected images. This paper also targets to develop surroundings of the vehicle for wider distortion less 
field of view and camera perspective independent top down view, with minimum computation cost which is 
essential due to limited computation power on vehicles. 
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INTRODUCTION 

With increasing number of road accidents, driver 
assistance system is becoming progressively popular. 
The system not only tries to ensure the safety of 
people behind the wheels but also prevents accidents 
and provides support for better and easy driving. The 
360-degree surround view system provides a compre-
hensive image of the vehicles’ immediate surroundings, 
helping drivers to keep a track of obstacles around, 
highlights lane markings, eliminates blind spots and 
provides precise maneuvering as a part of driving 
assistance. To achieve goals of surround view, image 
sensors should continuously capture very wide angle 
images. These images are processed and delivered to 
monitoring module in real time. In surround view 
system (SVS), hardware setup containing cameras, 
processing unit and display unit is installed on vehicle. 
The images captured by cameras are sent to image-
processing unit; finally processed images are displayed 
on the LCD or Central Information Display. In our 

design, four cameras are installed around the vehicle 
in this system: one on both front and rear bumpers, 
and rest on both side view mirrors of the car. The 
detailed setup is shown in (Fig. 1). 

Fig. 1. Camera setup around the vehicle. 
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In some previous designs, five or six cameras are 
installed; four on each corner of the car and one on 
rear bumper (five cameras) and one on front bumper 
(six cameras). The choice of four cameras was made 
in light of the prime aim of this research; i.e., to 
produce best output results of surround view cons-
truction while keeping computation and hardware 
cost to minimal. Since cameras need to cover a large 
area of vehicle’s surroundings without loss of much 
data, best option is to use fish eye lenses. The ultra-
fish eye lenses with 180° horizontal field-of-view 
(FOV) are used in this research. 

In proposed work, cameras are installed with some 
degree of tilt towards the direction of FOV from the 
horizontal axis, so that wider region of interest (ROI) 
around the vehicle is captured. This helps in providing 
better visibility of surroundings to the driver, in turn 
increasing accuracy of the system. The cameras used 
in the system has frame rate of 30 fps to provide 
surrounding conditions in real time. This means, SVS 
should provide output at the same frame rates as 
camera; so that the system is able to deliver real time 
performance in motion. 

Before embarking on this project, extensive lite-
rature review was done, which portrays that many 
techniques have been proposed and implemented till 
date. (Kedzierski et al.,2008) used arc curvature and 
differential geometry of the input image for fisheye 
correction. The fish eye correction algorithm based 
on circle fitting was proposed by (Burchardt et al., 
2001). Li and Hartley (2005) proposed a non-iterative 
method by taking a number of correspondences from 
two views to calibrate radial distortion. This approach 
is independent of camera parameters and to convert 
the images into bird’s eye view, calibration matrix is 
extensively used. Yu and Ma (2014), Li et al. (2014), 
Santhanam et al. (2014) and Dhane et al. (2012) have 
used reference points to convert fish eye images into 
top-down view images. Lin et al. (2012) has used top 
view transformation model for perspective transfor-
mation and involves an iterative method to determine 
the best results, if camera parameters are not known. 
Melo et al. (2013) and Brito et al. (2013) have deve-
loped techniques for calculation of center of distortion 
(COD) before calculating radial distortion. Both the 
papers used slope of lines in natural images or pre-
designed pattern to find the COD for all the curves. 
Although this paper used slope of the lines, but this 
work tries to find the lines in the pattern with lowest 
slope to estimate COD. All of the above methods 
except (Dhane et al., 2012) utilizes forward mapping 
that further requires interpolation to fill in the vacant 

pixels, thus increasing computation efficiency and time. 
Proposed method uses inverse mapping technique si-
milar to technique discussed by (Dhane et al., 2012) 
for lens distortion correction. After practical imple-
menttations of conventional mapping and inverse map-
ping, later was found to reduce computational comp-
lexity as it eliminates need of interpolation.  

Contributions of this work are three folds: 

1. This is the first work for vehicle surround view to
consider COD. A fast and efficient pattern based
approach has been developed for accurate COD
detection.

2. A mapping based algorithm is developed, where
look up tables (LUT) are used to map pixels.

3. A novel technique has been developed to estimate
homography matrix parameters when input camera
projection plain changes.

Rest of the paper is divided into following sec-
tions: lens distortion correction discussed in Section 
II, homography, top-down view transformation  and a 
novel technique of computation of homography matrix 
based on camera tilt using generalized point selection 
are also given in Section II, results are presented in 
Section III followed by discussion in Section IV. 

MATERIALS AND METHODS 

LENS DISTORTION CORRECTION 

Most of the fish-eye lenses provide a wide field-of-
view (170° or more sometimes). These lenses have a 
short focal length causing the lens to have wider 
FOV. With this advantage, the images captured by 
the fish-eye lenses have a disadvantage of being 
distorted; i.e., the straight lines do not appear straight 
anymore and there is a loss of rectilinear projection. 
The captured images have both radial as well as 
tangential distortion, since the tangential distortion is 
negligible; therefore, only radial distortion is taken 
into account. Fish-eye lenses produce a zooming 
effect that makes objects appear bigger near optical 
center compared to objects at distance. The resulting 
images appear as if being watched through a long 
barrel, thus called as ‘barrel distortion’. This effect 
causes objects towards the image boundary to get 
crammed in relatively lesser number of pixels. In the 
proposed method, barrel distortion is corrected in two 
steps: radial correction and stretching, which result in 
corresponding LUTs. These LUTs are further used 
for inverse mapping.  
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Generally optical axis of the lens and axis of 
camera sensor are not aligned. Distortion at any given 
coordinates in the image is dependent upon the dis-
tance of that pixel from the center of lens. Till now, 
effects of misalignment of sensor center and COD 
has not been considered in 360°surround view cons-
truction (SVC) technique. 

Center of distortion estimation (COD)  

Ideally, center of distortion and center of image should 
overlap, but in real camera modules these centers are 
slightly mismatched. This happens due to misalignment 
of lens and sensor in camera module. A simple and 
accurate method for COD estimation is developed in 
this paper, which follows the steps given below: 

a) ‘n’ images of a grid shown in (Fig. 2a) are cap-
tured with ultra-fish-eye lens resulting in images
shown in (Fig. 2b).

b) In each image, two orthogonal lines with mini-
mum curvature are selected (found near the center
of image).

c) The intersection of these orthogonal lines is con-
sidered as COD of corresponding image.

d) This process is repeated for both horizontal and
vertical lines in selected n images to get n COD
co-ordinates.

e) The final COD is estimated by taking average of
these n CODs, (Fig. 2b).

Fig. 2. (a) Grid of lines (b) Fish Eye Image of grid of 
lines. 

In above algorithm, RANSAC technique (Schnabel 
et al., 2007) is used to estimate the best fit line seg-
ment. This algorithm was implemented using n = 20, 
multiple samples help avoiding COD calculation error. 

Position of any pixel in image is calculated using 
COD as origin of coordinate system. All the distance 
and angles, in further equations, are calculated with 
respect to COD. 

Radial distortion correction 

Barrel distortion is present all over the image and is 
symmetric around COD. All the pixel coordinates are 
referred in polar coordinate system with COD of 
image as origin. Let image generated by fish eye lens 
be FP (fish-eye projection) and image for real world 
plain be represented by WP (world plain image with-
out fisheye distortion). Let distance of pixel from 
COD in FP image be ‘r’ and distance of pixel in WP 
be ‘R’ and angle made by a pixel with the camera 
axis in FP and WP are represented by ‘α’ and ‘Ө’, 
respectively. Focal length of camera lens is ‘f’. The 
intuitive representation of WP and FP are shown in 
(Fig. 3). 

Fig. 3. Image representation in image plain with and 
without fish-eye distortion. (a) Pixel distance from 
center: R is the distance without distortion and r is 
pixel distance and space compression due to fish eye 
lens. (b) The angle made by pixel: α and Ө are angle 
with camera axis with and without distortion respect-
tively. 

Distance from origin for every output pixel (R) is 
calculated using the r of input pixel. Prior to that, the 
dimensions of the output (radially corrected) image 
are calculated using the following equations: 

, (1)

, (2)
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, (3)

where, μ = refractive index of the lens material 
(ranging 1-1.15), f = focal length of the camera lens. 
H and W are height and width of the corrected image 
respectively. 

If focal length is not available, it can be determi-
ned using image dimensions captured from that same 
camera. 

. (4) 

Using Eq. 3, a inverse mapping matrix is deve-
loped which will describe backward relationship from 
pixel coordinates of radially corrected image (R,α) to 
the input fish-eye image (r, Ө). 

Pixel stretching 

Radially corrected image is stretched to generate a 
conventional image with horizontal and vertical stret-
ching. Stretching procedure is mainly performed to 
construct the image boundaries, which are left vacant 
after radial correction. Radially corrected image still 
has distortion; moving away from the center in hori-
zontal and vertical direction, quantity of vacant boun-
dary pixel keeps on increasing. The proposed method 
uses inverse mapping for stretching. For vertical 
stretching, the corresponding input y-coordinate is 
calculated for every y-coordinate of the output image. 
The y-coordinate of every output pixel is represented 
as Y, whereas y-coordinate of every input pixel is ‘y’ 
in original image, and the following equation is used 
for the mapping of input pixel to output stretched 
image pixel: 

, (5) 

where, s = stretching factor that determines the maxi-
mum stretching, oh = height of output image, ih = 
height of input image for this stage, cf = correction 
factor, referring to the overall stretching for the entire 
image pixels,  

.  (6) 

The correction factor cf is experimentally deter-
mined constant linear multiplier. The radial distortion 
increases non-linearly with radius; therefore theoreti-
cally a nonlinear cf (directly proportional to pixel 
radius) would result in better image. But when the 

experiments were conducted for non-linear cf, they 
did not show any significant improvement in image 
quality. Therefore, final algorithm was set with cons-
tant cf. In other words, if a column is selected in 
radially corrected image; pixels at both the ends have 
zero pixel value. Vertical stretching extrapolates central 
values to generate the complete column. Same process 
is repeated for every row and column in image. 

Barrel distortion (Fig. 4a) is evident in center of 
the image. The vertical lines appear curved and the 
image center is zoomed. Whereas the window at the 
sides, especially towards the ends, is less distorted but 
clustered. On application of the proposed distortion 
correction algorithm, curved lines become straight 
and window which lies in the center of the image 
acquire lesser image area than in the original image 
as shown in (Fig. 4b). Thus, the center zooming is 
reduced but the image area near the image boundary 
appears to have noise, because sensors do not capture 
enough information there.  

Fig. 4. (a) Image captured by a fish eye camera with 
180° field of view (b) The final lens distortion cor-
rected image using proposed method. 

TOP DOWN VIEW TRANSFORMATION 

The cameras installed for driving assistance are tilted 
at some angle from the vertical axis to capture images 
of the surroundings. These images suffer from perspec-
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tive distortion but are also free from the presence of 
unnecessary distant objects. These images need to be 
transformed to a bird’s eye view. Lens distortion cor-
rected (LDC) image (calculated in previous subsec-
tion) still has effect of camera tilt, to understand it 
better let us take an example for intuitive understan-
ding on top down view. Let image of a rectangle is 
captured directly from above (top down view) shown 
as rectangle ABCD in (Fig. 5). While same rectangle 
captured with a camera having tilt will appear as a 
trapezium (A’B’CD). 

This intuition is used to develop a generalized 
method for parameter calculation at various tilts. In 
other words, consider a simple view of a road or any 
plain having parallel lines after removal of barrel 
distortion. These parallel lane markings will appear 
as if they are converging at some point. The aim of 
top down view conversion requires these lane mar-
kings to appear parallel to each other. To achieve this 
aim, homography technique is used. 

Fig. 5. Effect of camera tilt of object structure. 

To apply homography matrix, four reference points 
are considered in the input image and four points are 
taken in the required perspective image corresponding 
to these input points. Thus, eight sets of co-ordinates 
are available and the homography relation can be ap-
plied as follows: 

, (7) 

where, (x, y, 1) are input coordinates and (X, Y, Z) are 
output co-ordinates. The variables h11, h12, h13, h21, h22, 
h23, h31, h32, h33 are parameters of homograpy matrix. 

In order to convert output co-ordinates to image 
co-ordinates, X and Y are divided by Z, thus the ob-

tained output points would become  and h33 
will be 1. For eight set of co-ordinates, eight equations 

can be represented, giving the value of eight norma-
lized elements of homography matrix, discussed in 
following subsection. 

Calculation of elements of homography 
matrix 

The obtained eight equations can be represented in 
the form of matrix shown in Eq. 8. (xi, yi) are input 
image co-ordinates and (Xi, Yi) are output image co-
ordinates. With the help of Eq. 8, the elements of 
homography matrix are calculated. The homography 
matrix obtained is unique for the chosen set of points. 
Once, the matrix is obtained, by inverse mapping, 
corresponding position of pixel in input image is 
calculated for every output image pixel. 

. (8) 

The final result is the top-down view of the input 
image. 

.  (9) 

For inverse mapping, inverse of homography matrix 
is calculated and that is applied for every output pixel. 

. (10)

Generalization of homography matrix 

As discussed above, to convert the image into top-
down view, we need four points in input image and 
their corresponding projections in output image; i.e., 
the desired view image. The process is tedious, be-
cause for every image a proper set of points should be 
selected. The selection of output set of points depends 
entirely on the type of view required, image resolu-
tion and tilt angle of camera installed on the vehicle. 
In the proposed work, selection of points has been 
generalized, so that it works for every image within a 
range of camera tilt. The generalization has been done 
as a function of camera tilt angle t and the algorithm 
works well with a band of +/- 8° of the actual camera 
tilt. Once the cameras are installed at the standard 
angle of 57°, the user may require to adjust the field 
of view (FOV) for parking. For increasing or decreasing 
the FOV, user needs to adjust the camera tilt, but as 
soon as the tilt varies a new set of parameters are 
required. Storing a set of parameters for every va-
riation in tilt requires lot of memory and computation. 
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To overcome this issue, a generalized method was 
developed to automatically calculate the shift in the 
coordinates of the output image point locations after 
the tilt is provided.  

The central idea behind generalization of points is 
that any square or rectangle lying in the camera frame 
appears to be a trapezium, whose slant angle depends 
on the tilt angle of the camera installed. In addition, 
size of the square or rectangle, which will appear in 
the output image, can also be taken as function of 
camera tilt. Therefore, these four co-ordinates of the 
trapezium and the tilt angle can be used to predict the 
x-axis and y-axis location of the four point for required 
output image. The non-linear regression was used to 
estimate the shift in output image pixel coordinate with 
respect to tilt provided. 

PREDICTION OF POINTS 

A set of input and output coordinates were required 
initially to form a model to predict the shift in pixel 
coordinates with respect to change in tilt. Initially a 
set of images were captured at various angles and 
their corresponding output image were also captured 
to generate homography matrix. Now non-linear se-
cond order and third order regression technique are 
used to develop the relation between the shift of pixel’s 
X and Y co-ordinate with respect to camera tilt. In 
(Fig. 5), the rectangle ABCD represents four points in 
output image, while trapezium A’B’CD represent the 
input image points for the homography image. When 
the tilt is provided to camera, there is obvious shift in 
the location of points A’B’CD. Individual regression 
model is developed for each X and Y coordinate of 
the trapezium corners.  

As base of trapezium is symmetric around the 
center, therefore finding coordinates of one side of 
the trapezium can be used to calculate coordinates of 
other side of base. Let initial coordinates of point C 
and D (Fig. 5) be (cx, cy) and (dx, dy) respectively and, 
the shifted pixel coordinates after tilt, C’ and D’ be 
(c’x, c’y) and (d’x, d’y) respectively. Then shifted base 
position will be given by following equation: 

, (11) 

, (12) 

where t represents the tilt in camera from the standard 
base position for which initial coordinates were lo-

cated and its coefficients ( , ) are the parameters 
which are estimated using regression technique. Since 
change in location of base coordinates is not signi-
ficant, therefore second order regression was able to 

predict the location of pixels very accurately. The 
second point can be located using the shift in first 
point as shift is symmetric around the x axis. 

To calculate remaining two points for perspective 
transformation we need to calculate horizontal and 
vertical shift in location of points from their original 
position, which is calculated using non-linear regres-
sion estimation. But for these equations the third order 
non-linearity was used, because experiments did show 
that third order equation were able to predict better 
than second order equations. 

, (13) 

, (14) 

where, ßi and γi are parameters of regression. The 
Height in Eq. 13 represents the distance by which the 
line A’B’ has moved from its original location, and 
Shift represents the shrink in length of this line seg-
ment. For remaining two coordinates of the trapezium, 
we need to know its slant angle or indirectly spea-
king, the shift in the x and y coordinate of the trape-
zium at the top ends with respect to the base points, 
which can be calculated using Eqs. 13, 14. 

Tilt estimation error: We calculate angles of the 
final rectangle in top down view. Theoretically, a per-
fect top down view should have a rectangle, but point 
prediction method introduces an error in final top down 
view, this error is termed as ‘tilt estimation error’. 

Table 1 shows the predicted outputs for various 
tilts. For this experiment the actual angle was taken 
same as the angle of cameras mounted on vehicle, 
which was 57°. Then the points were predicted for 
various tilt angles and in final perspective transform 
the transformation error was within 5° of the required 
results and tilt was varied between 49° and 65°. 

Table 1. Perspective transform angles for predicted 
homography matrix for various angles. 

Camera Tilt 
(degrees) 

Slope of the 
output line 
(degrees) 

Perspective error
(degree) 

65 84.80 5.2
63 86.52 3.48
61 87.74 2.26
59 89.46 0.54
57 (actual angle) 89.13 0.87 
55 87.57 2.43
53 86.50 3.5
51 85.70 4.3
49 85.26 4.74
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Fig. 6 shows the results of top down view con-
version using the developed technique. (Fig. 6c) shows 
the results of predictive generalization technique for 
image captured at 42° shown in (Fig. 6a) and (Fig. 
6d) show the results for the image (Fig. 6b), which 
was used to find the point to calculate the parameters 
of homography matrix. 

Fig. 6. Results of the predictive generalization of 
homography matrix for various tilt angles. (a) Image 
captured with camera tilt angle of 42° (b) Image 
captured with camera tilt angle of 57° for which 
actual homography parameters were calculated (c) 
Top down view using point prediction method for 42° 
(d) actual top down view conversion using homography 
matrix at 57°.  

RESULTS 

Implementation flow of the complete algorithm from 
fish eye lens distortion correction to top down view 
conversion is shown in (Fig. 7). Proposed technique 
involves computation only for generating inverse 
mapping matrix. Once the inverse mapping matrixes 
are collected for all the sub-processes (section-II), 
they can be used to map pixels from raw input to final 
output without any computation. To explain it better, 
let’s take a detailed look at the flow chart in (Fig. 7). 

The input image to the system is a fish eye image 
captured from four fish eye cameras, mounted on four 
sides of the vehicle. The input images taken from fish 
eye cameras with field of view of 180° are shown in 
(Fig. 8). These are four images from each side of the 
vehicle. The Figs. 8a and 8b are the images captured 
from cameras mounted on front and back side, while 

Fig. 7. Algorithm flow chart from input image to top 
down view conversion. 

(Fig. 8c) and (Fig. 8d) are the images taken by 
cameras mounted below right and left rear view 
mirrors. It is clear from the images that the body of 
the vehicle (on which cameras are mounted) looks 
curved. Each image passes independently into the 
system. The COD for each camera has been calcu-
lated prior to mounting using given pattern shown in 
(Fig. 2a). Distortion radius is calculated with respect 
to this COD. Reverse mapping matrix is calculated 
using Eqs. 1–4. Pixels from input image are mapped 
directly into the radial corrected image skeleton once 
LUT is known. It is important to know that LUT is 
specific to the given setup. Same LUT can be used 
for all the vehicles of same model but radial distor-
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Three LUT are required to generate final output 
image from input image. This map can be used to 
make a signal flow path for each input pixel on a 
FPGA and output image will be delivered in real time 
on the vehicle central display, which makes it feasible 
to use camera frame rate of 30 fps. 

tion correction matrix has to be calculated for every 
new vehicle model, which will have different dimen-
sion. The final results are shown in (Fig. 9) for the 
input shown in (Fig. 8). There are four outputs, (Fig. 
9), with respect to four inputs, (Fig. 8).  

5th step of the flow chart converts radial distortion 
corrected image into stretched image, for which a 
LUT is developed and it is used to map pixels from 
input to output. In 6th and 7th step of flow chart, the 
homography matrix is calculated and corresponding 
LUT is stored to map input image to required per-
spective (top down view). The last step is automatic 
generation of homography matrix for various camera 
tilts, but it will not be applicable once the camera is 
set by driver in a particular angle.  

The final results from the camera mounted on the 
front of the vehicle are shown in (Fig. 10).  It is clear 
from (Fig. 10a), there is very high fish eye distortion 
in the image (all the lines in image look curved). (Fig. 
10b) shows the lens distortion corrected image, which 
looks like an image taken by a normal flat lens ca-
mera. The final image in (Fig. 10c) is the top down 
view.  

Fig. 8. Images taken by fish eye cameras mounted on car (a) image taken by front camera (b) Image taken by 
back camera (c) Image taken by right side camera (d) image taken by left side camera. 
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Fig. 9. Output images produced by proposed algorithm for the set of input fish eye images (a) Output image for 
front camera input (b) Output image for back camera input (c) Output image for right camera input (d) Output 
image for left camera input. 

Fig. 10. (a) Image from the fish eye camera mounted 
on front of the vehicle (b) Image after lens distortion 
correction (c) The final output image as top down view 
of the input image. 

DISCUSSION 

The present manuscript presents a novel method for 
generating top-down view of the frames captured by 
cameras with ultra-fish eye lenses, which are 
mounted on all four sides of the vehicle. The COD of 
the fish eye captured images or frames is estimated 
and then passed through the lens distortion correction 
algorithm to obtain distortion free image. The images 
captured at an angle from horizontal are converted 
into top-down views using the concept of homography. 
Later, homography matrix is generalized for a finite 
range of resolution of the input image. All above-
mentioned steps were successfully applied and tested 
on experimental data. The proposed method produces 
satisfactory results on random images independent of 
camera tilt angle. The generalization technique deve-
loped produces best results in tolerance band of 8° (of 
actual camera tilt) as shown in Table 1. Table 1 
presents the relation between camera tilt and slope of 
one of the vertical lines observed in (Fig. 6b). The 
highest perspective error in the given angle variation 
is 5.2° as shown in table 1. The future scope of the 
research remains in development of the next stage of 
surround view system, where stitching (Peer et al., 
2002) of these images to produce complete 360° 
surroundings of vehicle in a single image. There is 
also scope in development of lens distortion correc-
tion technique, where loss of information still can be 
reduced and perspective transformation method can 
be improved to make it generalized for any image 
resolution and tilt angles. 
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