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ABSTRACT

We propose a methodology to support the physician in the automatic identification of mid-sagittal sections of
the fetus in ultrasound videos acquired during the first trimester of pregnancy. A good mid-sagittal section
is a key requirement to make the correct measurement of nuchal translucency which is one of the main
marker for screening of chromosomal defects such as trisomy 13, 18 and 21. NT measurement is beyond
the scope of this article. The proposed methodology is mainly based on wavelet analysis and neural network
classifiers to detect the jawbone and on radial symmetry analysis to detect the choroid plexus. Those steps
allow to identify the frames which represent correct mid-sagittal sections to be processed. The performance
of the proposed methodology was analyzed on 3000 random frames uniformly extracted from 10 real clinical
ultrasound videos. With respect to a ground-truth provided by an expert physician, we obtained a true positive,
a true negative and a balanced accuracy equal to 87.26%, 94.98% and 91.12% respectively.

Keywords: mid-sagittal section, neural network, nuchal translucency, symmetry transform, wavelet analysis.

INTRODUCTION

Until the 80’s amniocentesis (i.e., analysis of
the amniotic liquid) and chorionic villus sampling
were the only real tests for prenatal diagnosis of
genetic disorders. Although technically advanced and
reliable, these tests are invasive, expose the fetus
to non-negligible risks (e.g., an increased probability
of miscarriage between 0.5% and 1%) and must be
performed late during the gestation (not before the
fourteenth and the eleventh weeks, respectively).

Late in the 80s, a non-invasive screening protocol
was introduced that takes into account also the
concentration of various fetoplacental products in
the maternal blood. The combination of maternal
age, thickness of the nuchal translucency (NT)
by ultrasound equipments and maternal serum
biochemistry (in particular, free b-hCG and PAPP-A)
in the first trimester usually allows to identify about
85%-90% of fetuses affected by the Down’s syndrome.
For this reason NT was originally proposed to foresee
the probability of a fetus with Down’s syndrome (Hyett
et al., 1996; Onyeacholem et al., 2015).

During the diagnosis phase, the role and the
experience of the physician are of crucial importance.
In general the measurements during the first trimester

of pregnancy are not automated involve not merely
a single organ but the entire human being due to
the uncertainty of the fetus position. For example, it
may happen that the physician must act maneuvers to
stimulate the fetus to assume a proper position for the
measurement of nuchal translucency.

One of the main aims of the Fetal Medicine
Foundation (FMF) is to characterize and to standardize
the measurement of nuchal translucency, useful also
to detect heart and great arteries abnormalities and
other genetic disorders as Edwards syndrome (trisomy
18), Palau (trisomy 13) and Turner syndrome. FMF
introduced an education process to certify, to help
and to establish high standards of scanning. Since
the reliability of the clinical examination depends
also on the quality of mid-sagittal sections, which
are done by hand, a “certificate of competence in
ultrasound” can be acquired by sonographers able to
perform high standard scans and that can prove a good
knowledge in diagnosis. In the faraway years the FMF
proposed a new methodology based on a combination
of the measurement of the nuchal translucency and the
maternal age to reduce the risk of trisomy 21 (Snijders
et al., 1998).

The analysis of the screening performance of SD
confirmed that serum biochemistry and ultrasound are
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substantially effective and efficient. Therefore a policy
to give that screening opportunity to pregnant women
of all ages will lead to substantially better detection
rates with a lower number of prenatal invasive tests.

Deng et al. (2012) introduced an automatic
detector for nuchal translucency that gives an
accurate measurement of the NT as well as other
methods (Bernardino et al., 1998; Lee et al., 2007).
However such a method is dependent by a correct
identification of mid-sagittal frames as suggested by
FMF and proposed in Piazze et al. (2007) and Mogra
et al. (2012).

The system proposed in Moratalla et al. (2010)
does not avoid fundamental constraints such as
the intensive training of the sonographer and the
identification of the user-defined window must contain
a large amount of NT and not include any structure
which could lead to wrong measurements. Even so, a
manual validation of the final result is required.

More recently, a preliminary system to process
three-dimensional ultrasound data was presented
in Cho et al. (2012), though conventional bi-
dimensional images are still the gold standard.
Furthermore, a methodology for the identification of
the mid-sagittal section was described in Anzalone et
al. (2013).

This paper introduces an original tool to support
the early diagnosis by selecting automatically possible
mid-sagittal sections in ultrasound videos, regardless
to eventual pathologies. In addition, our methodology
is able to remove the issue of intra-observer and inter-
observer repeatability, thus making objective the final
measurement.

MATERIAL AND METHODS

Nuchal translucency (Fig. 1) is a fluid fill under
the necks skin of fetus which appears sonographically
as an anechogenic area (i.e., a dark zone in grayscale
images) between two echogenic regions (i.e., bright
zones). The optimal period to measure the NT
thickness lays between the 11st and the 13rd weeks,
when NT reaches the maximum thickness. During
this period it also possible to verify other eventual
complications, including miscarriage, stillbirth,
preeclampsia, gestational diabetes mellitus, preterm
delivery, fetal growth restriction and macrosomia.

Fig. 1. Sample ultrasound image with highlighted
nuchal translucency.

The FMF drew up the first clinical training
program for skilled sonographers that proven to have
an excellent technical knowledge. Results obtained
during the last years suggest that this protocol ensures
a substantial precision in the measurements (Greene
et al., 2004). Wald et al. (2003) already did not
agree with this point of view, although a number of
authors recently claimed that he did a disservice to
the FMF because the proposed education process is
intended to maintain high quality and consistency in
the measurement of the nuchal translucency.

The protocol drawn up by the FMF recommends
that:

– the ultrasound machine should be of high
resolution;

– the magnification should be as large as possible;

– the fetal crown-rump length should be 45-84 mm;

– only the head and the upper part of the torax must
be present in the image;

– the fetus must be in a neutral position otherwise.
Indeed when the neck is hyperextended the
measurement may be increased to 0.6 mm;
similarly, when the neck is flexed the measurement
may be decreased by 0.4 mm;

– it must be possible to distinguish between fetal
skin and amnion because they appear similar
during this period of gestation;

– a good mid-sagittal section must be acquired:
an imaginary plane from front to back should
cross the body (or an organ) thus to divide it
into two symmetrical halves. For example, the
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transabdominal ultrasound probe should be posed
at the falx cerebri, which divides the choroid
plexus in two symmetrical halves.

This last item is quite important and it represents the
goal of our work. Both the following conditions must
hold to determine whether a sagittal section is also
median (Fig. 2):

– the vertical branch of the maxilla, which branches
off from the upper jaw to the nasal bone, must not
be visible;

– the plexus should not be visible, that is the region
is uniformly echogenic.

Not visible plexus

Not visible vertical branch

To be accepted

Visible plexus

Visible vertical branch

To be rejected

Fig. 2. Mid-sagittal (top) and not mid-sagittal (down)
sections, with falx cerebri (framed). The latter image is
rejected because it does not satisfy the required norms.

To the best of our knowledge, no standard dataset
of fetal videos or still images with measured and
validated data is available. Therefore we created our
own dataset acquired by an expert physician using
a GE Voluson E8 equipment. 10 video sequences
of various durations, representative of 10 different
subjects with both the left and the right sides,
were taken between the 11st and the 13rd weeks
of pregnancy. All digital files were stored with the
lowest compression ratio of the H.264 codec (ITU,
2013) in order to avoid as many artifacts as possible.
We uniformly extracted 3000 frames from the video
sequences in a random way and saved them in the PNG
lossless format with 480×640 pixels.

A variety of classification techniques were
considered to test the correctness of mid-sagittal
sections: we experimentally obtained the best result
via multilayer feed forward neural networks. One
advantage of this approach is the ability to design
a model by collecting the information about the
available data.

This paper describes a methodology, mainly based
on wavelet analysis and neural network classifiers
to detect the jawbone and on radial symmetry
analysis to detect the choroid plexus. These two
steps allow to identify automatically the frames in a
video sequence which represent correct mid-sagittal
sections to be processed. The description of the
methodology starts with an introduction on how to
train the classifiers, followed by an explanation of its
main steps. Details about the training phase of the
networks we implemented are reported together with
the description of the proposed methodology.

TRAINING OF THE CLASSIFIERS

Our algorithm takes its foundation on a couple
of neural networks to classify the results obtained
through subsequent image analysis steps. A first
neural network was trained to detect the presence or
absence of the vertical branch (Fig. 3). The input
of this network is obtained via a wavelet transform
described in the second step of the methodology. A
second network was trained to recognize each single
component: mandible, chin, nose and “other” (Fig. 4).
The input of this latter network is the image, selected
by the former one, which does not present the vertical
branch. These two networks are defined in the same
fashion: feed forward neural network with an input
layer whose number of neurons corresponds to the
size of input image; ten hidden layers to capture the
nonlinearity in the data; an output layer that produces
the final result. The performance function is the mean
square error between the network output n and the
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target output t:

MSE =
1
N ∑(ni− ti)2 .

To minimize the overall error, the network
weights w are adjusted by a back-propagation
process in accordance with the standard general
equations (Egmont-Petersen et al., 2002): ∆w(m)

ji = ηδ jOi +α∆w(m−1)
ji ,

∆w(m+1)
ji = w(m)

i j +w(m)
i j ,

where η is the learning rate, α is the momentum
constant, δκ and Oκ are the error signal and the output
neuron at hidden node κ , respectively. The maximum
number of epochs m was experimentally set to 1000.

Not visible vertical branch

Visible vertical branch

Fig. 3. Input images, obtained from Fig. 2, for the first
neural network.

To train the first network we created a specific
dataset with two classes which show the presence or
the absence of the vertical branch, labeled accordingly
by an expert. The input of this network consists in
a binary image, while the output layer returns two
probability values in the range 0.1–0.9, indicating the
degree membership to the classes above.

We permuted ten times the set of 3000 frames
and each permutation is partitioned into three subsets
of cardinality 1000. Each subset is used to train the
neural network, while the union of the other two
subsets is used as a testset. Because we generated 10
random permutations, the performances of the neural
networks, initialized once, were tested 30 times.

The second network has the goal of recognizing the
individual components in the ultrasound images which
do not provide the vertical branch. In particular, four
classes, labeled again by an expert, were considered:
the nasal bone, the mandible, the chin and “other”. We
are interested in the mandible component to delimit
a region of interest to look for the choroid plexus,
while the nose and the chin are considered in order
just to improve the reliability of this classifier. The
input of this network consists in a binary image and the
output layer returns four probability values in the range
0.1–0.9 for every component. The component which
presents the overall highest probability value for the
mandible class is considered as the actual mandible.

The goodness of the training of both the networks
has to be evaluated and it is reported within the results.

Fig. 4. The second neural network labels the
components of the image in Fig. 3(top) passed by
the first neural network: mandible (light-blue), chin
(purple), nose (yellow) and “other” (white).
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After the training of both the networks, the
proposed methodology needs to analyze the plexus:
this step is based on the meaning of echogenicity
of each pixel or set of pixels of the frame. In
order to assess this echogenicity, we reasoned that
an approach based on the identification of three
classes (anechogenic, echogenic and uncertainty) via
probability distribution function would have been
the best choice, in term of sensitivity, specificity
and computational time. The physician marked five
representative areas of 3×3 pixels for each class in
all the frames (Fig. 5). These sets of pixels were used
to calculate the probability distributions functions of
each class with mean µ and one standard deviation
σ (Fig. 6), used to evaluate the echogenicity of the
choroid plexus region.

Fig. 5. Anechogenic (red), echogenic (green) and
uncertain (blue) regions as marked by the physician.

µ =6.1
σ =3.5

µ =16.5
σ =4.6

µ =29.4
σ =7.9

Fig. 6. Normal probability distribution functions of the
anechogenic (red), echogenic (green) and uncertain
(blue) regions with mean µ and standard deviation σ .

Fetal profile

analysis

Jaw bone

detection

Choroid plexus

detection

Frame

selection

Fig. 7. Sketch of the proposed methodology.

MAIN STEPS OF THE METHODOLOGY
The analysis of the jawbone and the plexus

constitutes the core of our methodology. Fig. 7 depicts
its flowchart. Via wavelet analysis and neural networks
the algorithm checks the presence of the jaw bone;
if the vertical branch is not present, then it looks for
the choroid plexus via radial symmetry; otherwise it
discards the image because the basic requirement is not
satisfied. Lastly, the candidate image is classified via
probability distributions as a sagittal or a mid-sagittal
section.

Step 1: versus identification
A preliminary step consists in the identification of

the left or right fetal profile versus to limit the region
in which the jaw will be located. The bone tissue
has a high impedance with respect to the acoustic
waves and consequently its components appear as very
bright regions. Since the skull presents many bones
(chin, jaw, nasal bone, frontal bone, occipital bone)
it is sufficient to identify the upper quadrant with on
average the greatest number of bright components in
all frames of the video (Fig. 8). These face components
are detected through a particular wavelet transform,
defined in the next section.

Without loss of generality, we will describe
our methodology for the right profile, but similar
considerations are valid for the left profile.

Fig. 8. Choice of the quadrant with bright components.

Step 2: jaw bone detection
In order to locate the jaw bone and other

components already used to identify the profile versus,
we apply a wavelet transform able to highlight the
components of the face of the fetus, which will be
analyzed by the neural networks.
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The wavelet analysis is a powerful mathematical
tool for representing and processing data, to enhance
or to suppress components with specific frequencies
(i.e., size and shape). We applied the so-called à trous
algorithm (Holschneider et al., 1988) because it is very
fast and retains the maximum resolution (i.e., both the
output image does not undergo decimation unlike the
usual multiresolution analysis; González-Audı́cana et
al., 2005).

Given the image I, we perform a filterbank of low-
pass and high-pass filters:

I0(p) = I(p), Ii(p) = Ii−1(p)~ `i ,

where the non-zero elements of the low-pass filter `i
are given by the isotropic kernel ` (Jain et al., 1995;
Ballarò et al., 2008; Bellavia et al., 2014):

`=
1

16

 1 2 1
2 4 2
1 2 1

 , `i(2i−1q) = `(q) ,

and the pixel q spans the 3×3 neighborhood of each
pixel p. The remaining high-pass filter is defined as
the difference between two consecutive spatial scales,
which provide the wavelet planes (Fig. 9):

Wi(p) = Ii−1(p)− Ii(p) .

This algorithm takes a constant time when
computing a series of Wi due to the advantage that the
number of non-zero elements in `i is always equal to
nine and moreover the convolution can be speeded up
by considering the variable separability of `:

`=
1
16

 1
2
1

( 1 2 1
)
.

Small objects are enhanced in the first planes while
bigger components are present in the last ones. We
experimentally verified that a simple hard threshold
based on the average µ and standard deviation σ of
the overall luminosity of W6 is able to put in evidence
the main components of the face of the fetus (Fig. 10):

C(p) = {p : W6(p)≥ µ(W6)+2σ(W6)} .

W1=I0-I1

W2=I1-I2

W3=I1-I3

I0

I1

I3

I2

Fig. 9. A sequence of convolutions Ii with bigger and
bigger versions of the kernel ` (light-blue elements).
The differences Wi between consecutive convolutions
allow to locate structures with various sizes in I.

Fig. 10. The wavelet plane W6 to highlight the face
components.

This binary image (Fig. 3) is passed to the first
neural network, used to verify the absence of the
vertical branch. The images without the branch are
therefore processed by the second network which
identifies the component associated with the jaw.

Step 3: plexus detection

The main strategy of this step includes the concept
of radial symmetry that it is a significant process
in the field of information extraction in computer
vision. As the choroid plexus is located in the cranial
region, whose morphology can be approximated to
a circumference, we slightly modified a well known
algorithm able to detect both the size and the position
of this circumference, considered as a zone which
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shows a coarse radial symmetry (Loy and Zelinsky,
2003).

Symmetry plays a remarkable role in perception
problems and its relevance in vision tasks was already
exploited (Di Gesù et al., 2010). Here we are interested
in the identification of radial symmetries to locate
the correct position of the head of the fetus, roughly
considered as a circle. To achieve this goal on
grayscale images, different algorithms were proposed
in the literature (Reisfeld et al., 1995; Di Gesù et al.,
1997). A comparison of these methods was reported
in (Loy and Zelinsky, 2003) together with a fast
detector of circular and slightly elliptic objects through
the use of accumulator arrays of gradient fields. Its
efficiency was proved even if the exact radius of the
symmetry (i.e., the dimension of the head) is unknown
a priori, as in our case.

The underlying idea of the algorithm we used (Loy
and Zelinsky, 2003) consists in the observation that
each object in the image is delimited by its contour,
obtainable by following its higher values in the
gradient magnitude image. Therefore, amplifying the
contribution of gradient vectors which lie along
a circular shape of radius r highlights the center
of the circle. Vice versa, the contribution of the
vectors with random orientations (e.g., due to noise
or weak symmetry) will be neglectable. In other
words, maxima in the following accumulation array
Sr indicate the positions of pixels p with a remarkable
degree of symmetry with respect to r, as in Fig. 11. It
must be noted that even if a set of possible radii has to
be considered to fit properly the contour of the head,
this algorithm results quite fast because the gradient
field g is computed just once through, for example,
a simple and separable Sobel convolution. A further
Gaussian convolution Gr,σ with size equal to the radius
and standard deviation σ = r/4 reduces the effect of
eventual noise.

p′(p) = p+

[
r g(p)
||g(p)||

]
,

Or(p′(p)) = Or(p′(p))+1 ,

Mr(p′(p)) = Mr(p′(p))+ ||g(p)|| ,

Sr(p) =
Mr(p) min2{k,Or(p)}

k
~Gr,σ ,

where Or and Mr accumulate the number of pixels
and their gradient magnitude, respectively. The value
k=9.9 was set up by the authors of the original
paper (Loy and Zelinsky, 2003). The position of p′(p)
is indicated by red points in Fig. 11.

Fig. 11. The gradient, which is always orthogonal to
the objects’ contour, is considered for different radii,
highlighted by the red points. The size of each point
indicates the number of vectors influencing that point
(i.e., the degree of symmetry).

60◦120◦

60◦120◦

Fig. 12. Rectangular region of interest (located
through the jaw) with the superimposed circle (top),
obtained by the radial symmetry map S[85,90] (down).
The jaw is detected by the second neural network on
Fig. 10.
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In the images we considered, the cranial region is
not the only shape approximable to a circumference,
so knowing the position of the jaw bone, we limit the
search of the center of symmetry to the upper region to
the left of the jaw. We modified the symmetry detector
to consider only bright sectors with pre-determined
radii (85–90 pixels) and angles (60◦–120◦). We
experimentally fine-tuned these parameters taking into
account small variations in size of the head in
the images acquired by our ultrasound equipment
(Fig. 12).

Once the skull is located, we analyze in detail
its circular sector comprised between the radii 25–85
pixels and the angles 10◦–100◦: the pixels within
this area are labeled as echogenic or anechogenic
according to the probability distributions functions.
The current image of the video is considered a valid
mid-sagittal section if the number of anechogenic
and echogenic pixels satisfies the following pre-
determined test (Fig. 13):

#anechogenic
#overall

≤ φ

#echogenic
#overall

≥ ϕ

where #overall refers also to uncertain regions within
the circular sector and the empirical values are equal
to φ =0.10 and ϕ =0.55.

RESULTS

We focused our attention on the ultrasound
analysis for detecting eventual mid-sagittal sections.
This is a fundamental step to identify the correct
thickness of the NT, which is beyond the scope
of this article. Our algorithm processes the videos
to understand the left or right fetal profile versus,
but this information can be provided preliminarily
by the physician. The pipeline of algorithms we
implemented follows the protocol proposed by the
Fetal Medicine Foundation and it is based on two
multilayer feed forward neural networks to analyze the
main components of the face of the fetus, obtained
via a redundant wavelet transform. A training step
is required to fine-tune the correct response of the
neural networks and we randomly extracted 10 times in
accordance to the section ‘Training of the Classifiers’.
A symmetry detector limits the region of interest
where to apply the probability distributions functions
provided by an expert physician.

100◦

10◦

Accepted

100◦

10◦

Rejected

Fig. 13. Output returned by the proposed methodology
(Fig. 2). Colors refer to the ground-truth defined by an
expert physician (Fig. 5).

For the sake of completeness we do not report
the confusion matrix of just the overall methodology,
but also the results attained by each single step of
the pipeline with respect to the opinion expressed
by a skilled physician. To avoid ambiguity the
confusion matrices have different names depending
on whether they relate to the training (efficiency) or
test (performance) phases of the neural networks.
Moreover, the following matrices are in percentages
and therefore include the values of sensitivity and
specificity. The efficiency matrices of the neural
networks during the preliminary training are reported
in Tables 1 and 2, while the performance matrices
of the trained networks are given in Tables 3 and 4.
Results about the recognition rate of the choroid plexus
are reported in Table 5. It must be noted that each one
of this steps rejects part of the test-set of images and
conveys the remaining images to be processed further
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till the end of the algorithm. If we consider the final
correctness of the complete methodology on all the
test-set, we obtain better results as shown in Table 6.

Table 1. Efficiency matrix about the vertical branch on
the training-set (first neural network).

Vertical branch training

y
es

n
o

M
et

h
o

d
o

lo
g

y

yes no

Physician

86.68% 14.47%

13.32% 85.53%

Table 2. Efficiency matrix about the face components
on the training-set (second neural network).

Physician

M
et

h
o

d
o

lo
g

y

m
an

d
ib

le
ch

in
n

o
se

o
th

er

mandible chin nose other

Face components training

95.89% 1.43% 1.04% 0.65%

1.68% 96.69% 0.30% 2.96%

2.05% 0.01% 98.48% 0.30%

0.38% 1.87% 0.18% 96.09%

Table 3. Performance matrix about the vertical branch
on the test-set (first neural network).

94.96% 11.46%

5.04% 88.54%

Vertical branch test

y
es

n
o

M
et

h
o
d
o
lo

g
y

yes no

Physician

Table 4. Performance matrix about the face
components on the test-set (second neural network).

Physician

M
et

h
o

d
o

lo
g

y

m
an

d
ib

le
ch

in
n

o
se

o
th

er

mandible chin nose other

Face components test

98.56% 0.20% 0.63%

0.85% 99.80% 3.54%

0.00% 0.00% 20.60%

0.59% 0.00% 75.23%

99.70%

0.10%

0.10%

0.10%

Table 5. Performance matrix about the choroid plexus
on the test-set.

y
es

n
o

M
et

h
o
d
o
lo

g
y

yes no

Physician

Choroid plexus test

86.48% 16.73%

13.52% 83.27%

Table 6. Performance matrix of the whole methodology
on the test-set.

ac
ce

p
te

d
re

je
ct

ed

M
et

h
o

d
o

lo
g

y

accepted rejected

Physician

Mid-sagittal test

87.26% 5.02%

12.74% 94.98%

DISCUSSION

The first trimester screening is an non-invasive
evaluation to detect risks for a set of chromosomal
abnormalities (e.g., Down’s syndrome, trisomy 13,
18 and 21). It correlates maternal blood tests with
an ultrasound analysis of the fetus in the region of
nuchal translucency. This screening procedure has an
approximation rate of about 85% of true positives and
5% of false positives (Orlandi et al., 1997). Moreover,
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it does not return any diagnoses or put in evidence
issues, but it simply highlights to force the patient to
further investigations.

The study of fetal images is a difficult task
in general and just a few works concern even the
semi-automatic analysis of ultrasound fetal images:
they usually involve the measurement of significant
characteristics (e.g., nuchal translucency, nasal bone,
head circumference, femur length) on mid-sagittal
sections manually selected by the physician (Chalana
et al., 1996; Bernardino et al., 1998; Lee et al., 2007;
Catanzariti et al., 2009; Deng et al., 2010; Moratalla et
al., 2010; Wee et al., 2010).

Although this is still a key area of research,
new efforts are now fostering to provide a
complete diagnosis with further non-invasive and
complementary techniques. Some examples in the
gene field are given by the Polymerase Chain Reaction
and the Next Generation Sequencing, but with greater
costs, requirements and turnaround times (Chitty et
al., 2012) with respect to the proposed approach.

We defined an automatic methodology to detect
mid-sagittal sections in ultrasound videos of fetuses.
The results versus the ground-truth proved the
reliability of our approach with a balanced accuracy
equal to 91.12% and the performance matrix of the
whole methodology is in Table 6. It must be noted
that the methodology returns a 87.26% of true positive
mid-sagittal frames, this indicates only 12.74% of
good mid-sagittal frames were rejected and, on them,
a correct measure could be done. On the other hand,
94.98% of true negative implies a notable result
because it means that just 5.02% of the frames could
drive the system to a non-correct measurement of the
nuchal translucency.
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Tech. Rep. CPT-88/P.2215.

Hyett J, Moscoso G, Papapanagiotou G, Perdu M,
Nicolaides K (1996). Abnormalities of the heart and

114

http://dx.doi.org/10.1109/CBMS.2013.6627795
http://dx.doi.org/10.1016/j.media.2008.04.001
http://dx.doi.org/10.1016/j.media.2008.04.001
http://dx.doi.org/10.1016/j.cmpb.2014.02.009
http://dx.doi.org/10.1016/S0301-5629(97)00235-4
http://dx.doi.org/10.1007/978-3-642-04146-4_66
http://dx.doi.org/10.1016/S1076-6332(96)80187-5
http://dx.doi.org/10.1016/j.ajog.2012.02.021
http://dx.doi.org/10.1002/uog.8996
http://dx.doi.org/10.1109/cbms.2010.6042618
http://dx.doi.org/10.1016/j.compbiomed.2012.04.002
http://dx.doi.org/10.3390/sym2020554
http://dx.doi.org/10.3390/sym2020554
http://dx.doi.org/10.1016/S0167-8655(97)00084-6
http://dx.doi.org/10.1016/S0167-8655(97)00084-6
http://dx.doi.org/10.1016/S0031-3203(01)00178-9
http://dx.doi.org/10.1080/01431160512331314056
http://dx.doi.org/10.1002/pd.812


Image Anal Stereol 2016;35:105-115

great arteries in chromosomally normal fetuses with
increased nuchal translucency thickness at 11-13 weeks
of gestation. Ultrasound Obst Gyn 7:245–50.

Jain R, Kasturi R, Schunck B (1995). Machine Vision. New
York: McGraw-Hill.

Lee YB, Kim MJ, Kim MH (2007). Robust border
enhancement and detection for measurement of fetal
nuchal translucency in ultrasound images. Med Biol
Eng Comput 45:1143–52.

Loy G, Zelinsky A (2003). Fast radial symmetry for
detecting points of interest. T Pattern Anal 25:959–73.

International Telecommunication Union (2013).
Recommendation ITU-T H.264 / International Standard
ISO/IEC 14496-10. Tech. rep.

Mogra R, Alabbad N, Hyett J (2012). Increased nuchal
translucency and congenital heart disease. Early Hum
Dev 88:261–7.

Moratalla J, Pintoffl K, Minekawa R, Lachmann R, Wright
D, Nicolaides K (2010). Semi-automated system
for measurement of nuchal transhicency thickness.
Ultrasound Obst Gyn 36:412–6.

Onyeacholem I, Kleiner B, Hull A, Chibuk J, Romine L,
Anton T, et al. (2015). Setting up a nuchal translucency
clinic: what radiologists need to know. Ultrasound
Quart . (in press)

Orlandi F, Damiani G, Hallahan T (1997). First-trimester
screening for fetal aneuploidy: biochemi stry and nuchal
translucency. Ultrasound Obst Gyn 10:381–6.

Piazze J, Anceschi M, Cerekja A, La Torre R, Pala A, Papa
A, et al. (2007). Nuchal translucency as a predictor of
adverse pregnancy outcome. Int J Gynecol Obstet 98:5–
9.

Reisfeld D, Wolfson H, Yeshurun Y (1995). Context-
free attentional operators: the generalized symmetry
transform. Int J Comput Vision 14:119–30.

Snijders R, Noble P, Sebire N, Souka A, Nicolaides K
(1998). Uk multicentre project on assessment of risk
of trisomy 21 by maternal age and fetal nuchal-
translucency thickness at 10-14 weeks of gestation. The
Lancet 352:343–6.

Wald N, Rodeck C, Hackshaw A, Walters J, Chitty
L, Mackinson A (2003). First and second trimester
antenatal screening for Down’s syndrome: the results
of the Serum, Urine and Ultrasound Screening Study.
J Med Screen 10:56–104.

Wee LK, Min TY, Arooj A, Supriyanto E (2010). Nuchal
translucency marker detection based on artificial neural
network and measurement via bidirectional iteration
forward propagation. WSEAS T Inform Sci Appl
7:1025–36.

115

http://dx.doi.org/10.1046/j.1469-0705.1996.07040245.x
http://dx.doi.org/10.1007/s11517-007-0225-7
http://dx.doi.org/10.1109/TPAMI.2003.1217601
http://dx.doi.org/10.1016/j.earlhumdev.2012.02.009
http://dx.doi.org/10.1002/uog.7737
http://dx.doi.org/10.1097/RUQ.0000000000000161
http://dx.doi.org/10.1046/j.1469-0705.1997.10060381.x
http://dx.doi.org/10.1016/j.ijgo.2007.02.010
http://dx.doi.org/10.1016/j.ijgo.2007.02.010
http://dx.doi.org/10.1007/BF01418978
http://dx.doi.org/10.1016/S0140-6736(97)11280-6
http://dx.doi.org/10.1258/096914103321824133

	Introduction
	Material and Methods
	Training of the classifiers
	Main steps of the methodology
	Step 1: versus identification
	Step 2: jaw bone detection
	Step 3: plexus detection


	Results
	Discussion

