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ABSTRACT 

This paper reports the results of a theoretical study on morphological characterization of foreground (X) and 
background (Xc) of a discrete binary image. Erosion asymmetry and dilation asymmetry, defined to 
elaborate smoothing of an image respectively by contraction and expansion, are generalized for multiscale 
smoothing, and their relationships with morphological skeleton and ridge (background skeleton) 
transformations are discussed. Then we develop algorithms identifying image topology in terms of critical 
scales corresponding to close-hulls and open-skulls, along with a few other salient characteristics, as 
respective smoothing by expansion and contraction proceeds. For empirical demonstration of these 
algorithms, essentially to unravel the hidden characteristics of topological and geometrical relevance, we 
considered deterministic and random binary Koch quadric fractals. A shape-size based zonal quantization 
technique for image and its background is introduced as analytical outcome of these algorithms. The ideas 
presented and demonstrated on binary fractals could be easily extended to the grayscale images and fractals. 

Keywords: dilation asymmetry, erosion asymmetry, close-hull, open-skull, degree of stability, hull fragments, 
skull fragments. 

INTRODUCTION 

The two fields mathematical morphology (Matheron, 
1975; Serra, 1982) and fractal geometry (Mandelbrot, 
1982) evolved independently but almost in same era 
near 1960s. Fractal geometry offers computation of 
fractal dimension, which is one of the measures to 
quantify the degree of roughness, and has been widely 
employed within the context of image processing, in 
texture-based image classification, image compressions, 
and many (Kaplan, 1999; Tolle et al., 2003; Xia et al., 
2006; Ji et al., 2013). However, the measures that 
quantify the shape-size content in varied types of 
images such as binary, grayscale, color and hyper-
spectral images; are from the field of mathematical 
morphology. Interestingly, various mathematical mor-
phological transformations are rightly appropriate to 
characterize fractal objects, fractal functions, fractal 
surfaces etc. This paper emphasizes on characterization 
of spatial binary objects (e.g. fractals) not by fractal 
dimensions but by morphological analysis. 

Mathematical Morphology evolved as set-theory 
based image analysis approach. The central idea of 
mathematical morphology is to examine geometrical 
structure of an image object with reference to an 

object of simple shape and size, termed as structuring 
element. The interactions of image object with struc-
turing elements result in nonlinear smoothing filters, 
also known as morphologic transforms (Serra, 1982; 
Maragos and Schafer, 1987a,b). Dilation and erosion 
are basic and mutually dual mathematical morphologic 
transforms. Dilation of an image followed by erosion 
is closing transform, and dual of this, i.e., erosion of 
an image followed by dilation is opening transform. 
Skeleton and ridge (henceforth referred to denote 
background skeleton) transforms, which are dual to 
each other, are geometrical representations summarizing 
overall shape, abstract structure, orientation of fore-
ground and background of an object respectively. 
Skeleton of a continuous binary image was first intro-
duced by Blum (1967), as medial axis. Skeleto-
nization is based upon a systematic use of multiscale 
erosions and openings with certain logical operations 
(Lantuejoul, 1980), while the ridge follows multiscale 
dilations and closings of an object. 

Shape-size analysis plays prime role in object 
recognition, and is an area of utmost importance in 
digital image processing and computer vision. Shape-
size analysis of image by multiscale smoothing has been 
used in mathematical morphology since its inception. 
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Granulometry and antigranulometry (Matheron, 
1975; Serra, 1982; Dougherty et al., 1989; Heijmans, 
1994; Soille, 2003), primary tools of morphology, 
systematically apply morphological transformations 
and their cascade-operations for multiscale shape 
representation, and define shape-size content based 
quantitative indexes to compute spatial complexity of 
foreground and background regions of a set (e.g. 
binary fractal) or a function (e.g. grayscale image). 
Maragos (1989) developed shape-size descriptor called 
pattern spectrum to detect critical scales in an image 
object and to quantify various aspect of shape-size 
content of the image. Several researchers employed 
binary morphological transformations to decompose 
spatial objects (e.g. binary images) into non-over-
lapping disks (convex polygons) of various sizes, and 
also into skeletons (Maragos, 1989; Pitas and Venet-
sanopoulos, 1990, 1992; Goutsias and Schonfeld, 
1991; Reinhardt and Higgins, 1996a,b; Xu, 1996, 
2001a,b,c, 2003a,b). These studies were carried out 
essentially for representation, and recognition of binary 
patterns. The main focus of the aforementioned 
papers was to decompose an image object based upon 
certain criterion e.g. homothetics of used structuring 
element or collection of convex polygonal etc. The 
current work is motivated by this seed idea of 
decomposition of image, but adapts an altogether 
different approach driven by internal image characte-
ristics to achieve the same. This very characteristic 
primarily is motivated by the work of Beucher (2005) 
on morphological residues, and could be identified by 
critical scales obtained from unique topological 
networks of image, namely skeleton and ridge, during 
multiscale analysis. The focus of this paper is not 
only limited to shape-size based systematic zonal 
quantization of image and its background, but it also 
provides spatial modeling of image in terms of shape-
size topology, texture analysis and pattern classification. 

In this paper, we demonstrate few aspects related 
to multiscale smoothing based shape-size complexity 
of image with primary focus only on finite discrete 
binary images and finite discrete binary structuring 
elements containing origin. Multiscale opening and 
closing are employed respectively for the analyses of 
foreground and background of a spatial object (e.g. 
binary fractal). It is known that the multiscale ope-
nings are scaled up to ultimate erosion of the image 
(Beucher, 2005, 1994), while the multiscale closings 
typically are scaled such that any further closing by a 
bigger size structuring element yields no expansion in 
closed version (assuming finite image and enough big 
background). In our experimentation during multiscale  
 

analysis of discrete image objects, we have observed 
that image (and its background) may have no rough-
ness with reference to a specific discrete size. This 
‘no roughness’ means a minimum (i.e., zero) value of 
corresponding quantitative indexes or pattern spectrum 
as referred above. In some cases, this ‘no roughness’ 
pattern stabilizes for a few suc-cessive multiscale 
iterations, which could be referred as stabilization of 
residues (Beucher, 2005). The overall analysis and 
results shown provide few insights on image topology 
that were not reported elsewhere to best of our know-
ledge. This topographic characteristic provides a base for 
shape-size based quantification of foreground and 
background of image. 

This paper is organized as follows: We define 
‘dilation asymmetry’ and ‘erosion asymmetry’ in the 
next section. These terms are not mentioned in classical 
mathematical morphology and are defined in this 
paper to elaborate smoothing of an image by expansion 
and contraction respectively. After this, we generalize 
these terms for multiscale smoothing and show their 
oneness respectively with ridge and skeleton. This is 
followed by a discussion on shape-size complexities 
of image background and foreground along with their 
‘degree of stability’, respectively via multiple close-
hulls and open-skulls, under the influence of increasing 
cycles of morphological closing and opening. We 
also propose algorithms to obtain critical scales 
corresponding to multiple close-hulls and open-skulls 
of an image along with their degree of stability. 
Afterwards, we demonstrate experimental results of 
these algorithms on deterministic and random binary 
Koch quadric fractals. As an outcome of analysis of 
these algorithms, we define systematic quantization 
techniques to quantify image and its background into 
zonal fragments with open-skulls and close-hulls res-
pectively being the quantifiers. There exist various 
techniques to estimate morphology based fractal dimen-
sion (e.g. Maragos and Sun, 1993; Radhakrishnan et 
al., 2004). We compute a scale invariant but shape-
dependent morphological quantitative index and 
correlate this with analytical fractal dimension of 
binary fractal. The paper ends with conclusion of the 
results of our study. 

Notation: Z = set of all integers; Z2 = two 
dimensional grid of discrete points; X, A, B, C = 
subsets of Z2; A ⊆ C = set A is subset of set C; A – C 
= set difference between A and C; U = set union; 
X⊕B = dilation of X by B; XƟB = erosion of X by 
B; X •B = closing of X by B; X oB = opening of X 
by B; ∅ = empty set. 
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MORPHOLOGICAL SMOOTHING 
- ASYMMETRY AND SYMMETRY 
OF IMAGE 

Morphological dilation and erosion transforms of an 
image X are actually defined against symmetric set of 
structuring element B with respect to origin 
(Matheron, 1975; Serra, 1982; Maragos and Schafer, 
1986). For the ease of notation, but with the same 
spirit of definitions, we refer simply X⊕B and XƟB 
respectively as morphological dilation and erosion of 
X by B. The cascade of erosion-dilation (resp. the 
cascade of dilation-erosion), in other words X oB 
(resp. X•B), implemented by an arbitrary size of B, 
provide morphological opening and closing. Closing 
is an extensive transform while opening is an 
antiextensive transform (Serra, 1982), i.e., for finite 
discrete binary image X and for finite discrete binary 
structuring element B, X oB ⊆ X ⊆ X•B. An image 
smoothes in closing transform such that the entire 
asymmetry of image with reference to struc-turing 
element is removed at cost of its expansion. 
Similarly, image smoothes in opening and entire 
asymmetry of image with reference to structuring 
element is removed at cost of its contraction. The 
terms ‘smoothing by expansion’ and ‘smoothing by 
contraction’ are used later in the document with this 
essence. Further in this context, we define dilation 
and erosion asymmetry in coming sub-sections. 

DILATION ASYMMETRY AND 
SYMMETRY 

We define dilation asymmetry Dasym(X), (or simply 
Dasym as we refer it further) of X with reference to B 
as: 

 Dasym(X) = (X •  B) – X. (1a) 

Dilation asymmetry is a measure of asymmetry or 
distortion (by expansion) of X by B due to closing. 
Dasym equals to ∅ in Eq. 1a imply X•B = X, which 
means X has no dilation asymmetry, or is perfectly 
dilation symmetric to B and cannot be expanded by B 
in closing cycle(s). We define dilation symmetry 
Dsym(X), (or simply Dsym as referred further) of X 
with reference to B as: 

 Dsym(X) = (X ⊕ B) – (X •  B). (1b) 

Dilation symmetry is a measure of symmetry of X 
with reference to B during the closing transform. For 
case of perfect dilation symmetry, i.e., X•B = X, 
Dsym = (X⊕B) – X, which implies that the entire 
incremented part of X due to dilation is symmetric  
 

with reference to B and hence, completely shrinks 
back during erosion in closing cycle. Interestingly, 
Eqs. 1a,b jointly illustrate that Dasym is incremented 
part of X due to dilation, which does not shrink back 
after erosion in closing cycle; while Dsym is incre-
mented part of X due to dilation, which shrinks back 
after erosion as closing cycle completes. This under-
standing elaborates the obvious observation from 
Eqs. 1a,b that Dasym and Dsym are mutually disjoint, 
and: 

 Dasym(X) U Dsym(X) = (X ⊕ B) – X. (1c) 

Eq. 1c indicates that set union of Dasym and Dsym is a 
zonal ring between X⊕B and X. 

We stated earlier that entire dilation asymmetry 
of X with reference to B is removed at cost of its 
expansion in closing, which means that closed 
version X•B is perfectly dilation symmetric to B, i.e., 
Dasym(X•B) = ∅. This, with replacement of X by 
X•B in (1a) yields (X•B)•B = X•B; concluding 
that closing of an image is an idempotent transfor-
mation. This also infers that dilation of X•B by B 
results in X⊕B, i.e., (X•B)⊕ B = X⊕B, or 
(X⊕B) oB = X⊕B; which indicates that dilated 
version of an image is super stable with respect to 
openings. These properties were classically established 
by Serra (1982), and our purpose to refer them here is 
to establish a consistency of definitions in Eqs. 1a,b 
with them. Fig. 1 illustrates smoothing of image in 
closing transform and also summarizes the above 
mentioned properties of dilation asymmetry and 
dilation symmetry. 

 

Fig. 1. Image smoothing in closing transform along 
with properties of dilation asymmetry and dilation 
symmetry. 

EROSION ASYMMETRY AND 
SYMMETRY 

We define erosion asymmetry Easym(X), (or simply 
Easym as referred further) of X with reference to B as: 

 Easym(X) = X – (X oB).  (2a) 

Erosion asymmetry is a measure of asymmetry or 
distortion (by contraction) of X by B due to opening. 
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Easym equals to ∅ in Eq. 2a imply X= XoB, which 
means X has no erosion asymmetry, or is perfectly 
erosion symmetric to B and cannot be contracted by 
B in opening cycle(s). We define erosion symmetry 
Esym(X), (or simply Esym as referred further) of X with 
reference to B as: 

 Esym(X) = (X oB) – (X Ɵ B). (2b) 

Erosion symmetry is a measure of symmetry of X 
with reference to B during the opening transform. For 
case of perfect erosion symmetry, i.e., X = X oB, Esym 
= X – (XƟB), which implies that the entire reduced 
part of X due to erosion is symmetric with reference 
to B and hence, completely expands back during 
dilation in opening cycle. Eqs. 2a,b illustrate that 
Easym is reduced part of X due to erosion, which does 
not expand back after dilation in opening cycle; while 
Esym is reduced part of X due to erosion, which 
expands back after dilation as opening cycle comp-
letes. This elaborates the otherwise obvious conclu-
sion from Eqs. 2a,b that Easym and Esym are mutually 
disjoint, and: 

 Easym(X) U Esym(X) = X – (X Ɵ B). (2c) 

Set union of Easym and Esym is a zonal ring between X 
and XƟB, as is clear from Eq. 2c. 

Dilation and erosion (as well closing and opening) 
are mutually dual transforms. The notion of previous 
sub-section could easily be correlated to procure 
Easym(X oB) = ∅, followed by (XoB)oB = XoB; 
deducing that opening of an image is an idempotent 
transform. Similarly, we procure (XoB)ƟB = XƟB, 
or (XƟB)•B = XƟB; which points that eroded 
version of an image is super stable with respect to 
closings. The latter procurement, and replacement of 
X by XƟB in Eq. 1a results in Dasym(XƟB) = ∅. 
Similarly, as we know that (X⊕B)oB = X⊕B, 
replacing X by X⊕B in Eq. 2a results in Easym(X⊕B) 
= ∅. In summary, eroded version of an image has no 
dilation asymmetry, and dilated version of an image 
has no erosion asymmetry. These properties were 
originally esta-blished by Serra (1982), and our 
purpose to refer them here is to establish a 
consistency of definitions in Eqs. 2a,b with them. Fig. 
2 illustrates smoothing of image in opening transform 
and also summarizes the above mentioned properties 
of erosion asymmetry and symmetry. 

 
Fig. 2. Image smoothing in opening transform along 
with properties of erosion asymmetry and erosion 
symmetry. 

MULTISCALE MORPHOLOGICAL 
SMOOTHING 

DILATION ASYMMETRY AND 
SYMMETRY – GENERIC FRAMEWORK 

In previous section, we discussed that X completely 
smoothes in closing transform, by removal of its total 
asymmetry with reference to B at cost of its 
expansion. The scope of this paper is discrete binary 
space, and within this scope, further smoothing of X 
by expansion is feasible via its closing by bigger 
discrete size structuring elements belonging to family 
of B. By convention, base structuring element B is a 
discrete binary prototype pattern of unit (i.e., one) 
size, and a finite pattern nB, given by Eq. 3, defines a 
family of binary patterns belonging to B and 
specified by discrete size n. 

 nB = 44 344 21 K
timesn

BBB
−

⊕⊕⊕ , (3) 

where n is non negative integer. By convention, nB = 
{(0,0)} for n = 0. The cascade of erosion-dilation, and 
the cascade of dilation-erosion, implemented by nB 
for successive values of n, provides multiscale morpho-
logical opening and closing respectively. These multi-
scale openings and closings are respectively denoted 
by Xo nB and X• nB. 

A closing by nB removes entire asymmetry of 
and up to size nB out of X, i.e., (X•mB) ⊆ (X• nB) 
for any non-negative integers m, n such that n ≥ m. 
Now as we perform multiscale smoothing of X by 
expansion, we are interested in a generalized version 
of Eq. 1a, i.e., dilation asymmetry Dn

asym(X) for nth 
iteration of multiscale smoothing by expansion. The 
most obvious generalized version seems to be 
Dn

asym(X) = X• nB – X, where n is a positive integer.  
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But with this pattern of generalization, we land up in 
a situation where Dp

asym(X)  Dq
asym(X) ∀ q ≥ p 

where p, q are positive integers. Rather than this 
approach of generalization, a much preferable idea to 
analyze the smoothing pattern of image will be to 
have smaller disjoint dilation asymmetry sets as ite-
rations of multiscale smoothing proceed. To visualize 
disjoint dilation asymmetry sets, we consider topo-
logy of zonal ring between X and X⊕B, given by Eq. 
1c, as elementary theme. Also, Fig. 1 depicts flip and 
flop of component Dsym within this zonal ring, by 
dilation of X•B and erosion of X⊕B respectively. 
So, if we realize multiscale smoothing of X by 
expansion in terms of zonal rings between X⊕nB and 
X⊕(n+1)B where n is a non negative integer, we 
shall obtain disjoint patterns of dilation asym-metry 
and dilation symmetry as smoothing proceeds, 
because a pair of unique dilation asymmetry and 
symmetry set shall exist within the region of each 
(mutually disjoint) zonal ring. Here we assume empty 
sets of dilation asymmetry as disjoint sets, if so 
happens for few iterations of multiscale smoothing. 
To generalize Eqs. 1a,b with this approach of zonal 
rings, we need to consider dilated image of current 
iteration of multiscale smoothing as input image for 
next iteration. We denote iteration count by non-
negative integer n and input image for nth iteration of 
smoothing by Xn. For n = 0, which is starting iteration, 
the input image X0 is X itself. As this approach 
considers dilated version of current iteration being 
input for next iteration, Xn = X⊕nB. With this 
approach of zonal rings, the generalized versions 
Dn

asym(X) and Dn
sym(X) of dilation asymmetry and 

symmetry respectively for nth iteration of multiscale 
smoothing by expansion are: 

 Dn
asym(X) = (X ⊕ nB) • B – (X ⊕ nB).   (4a) 

 Dn
sym(X) = (X ⊕ (n+1)B) – (X ⊕ nB) • B. (4b) 

Note that Eqs. 4a,b are trivial to achieve with re-
placement of X by Xn in Eqs. 1a,b. Assuming finite 
image and enough big background, the upper threshold 
of n, denoted by K, is maximum (or last) iteration in 
which smoothing of X by expansion occurs; indicating 
that Dn

asym is an empty set for each n > K. If so, using 
(4a) we obtain X• (n+1)B = X• nB ∀  n > K. In 
other words, X• (K+1)B is maximum possible closed 
version of X obtained by multiscale smoothing. We 
will shortly discuss a theoretical limit on maximum 
iteration of multiscale smoothing. 

Analogous to previous section, Dn
asym(X) (or 

simply Dn
asym as we refer it further) is measure of 

asymmetry or distortion (by expansion) of Xn by B 

due to closing. Similarly, Dn
sym(X) (or simply Dn

sym as 
referred further) is measure of symmetry of Xn with 
reference to B during the closing transform. Dn

asym 

and Dn
sym are mutually disjoint as is obvious from 

Eqs. 4a,b; and set union of Dn
asym and Dn

sym is a zonal 
ring between Xn⊕B and Xn as indicated by Eq. 4c. 

Dn
asym(X) U Dn

sym(X) = (X ⊕ (n+1)B) – (X ⊕ nB).  (4c) 

Eq. 4a in fact replicates the morphological ridge 
transform of discrete binary image X, which is 
realized in this sub-section as a asymmetry of 
topological zonal rings expanding out of X. Hence-
forth, the usage of term dilation asymmetry in 
essence could be pondered as morphological ridge 
(background skeleton). Maragos (1989) proposed 
extended reduced skeleton transform (ERST) which 
may eliminate some ridge redundancy in few scenarios 
and is compatible with pattern spectrum. The upper 
threshold value K obtained from ERST based model 
may slightly differ in some scenarios (e.g. a reduction 
of one iteration) than the one obtained from ridge 
based model (Eq. 4a) as described above. As our 
focus in this paper is more towards classifying overall 
shape-size topology of image, we embrace with ridge 
based model with awareness of this slight effect. 
However, we will point out this possible minor 
impact, wherever applicable. 

The generalized version of results summarized in 
Fig. 1 of previous section could be trivially obtained 
for nth zonal ring with replacement of X by Xn, i.e., 
(Xn•B) •B = Xn•B, and (Xn⊕B) oB = Xn⊕B. 
Replacing Xn by X⊕nB, the generalized results are 
((X⊕nB)•B)•B = (X⊕nB)•B, and (X⊕(n+1)B)oB 
= X⊕(n+1)B. As a closing by nB removes entire 
asymmetry of and up to size nB out of X, a more 
generic flavor of results is: 

 (X •  nB) •  mB = (X •  nB) ∀ m ≤ n, (5a) 
 (X ⊕ nB) omB = (X ⊕ nB) ∀ m ≤ n, (5b) 

where m, n are non-negative integers. 

We come back to pending discussion on 
theoretical limit for maximum iteration of smoothing 
by expansion. A cut-off cap Kmax on iterations could 
be introduced because of the fact that multiscale 
smoothing of X by expansion definitely stops as soon 
as X becomes subset of a specific discrete size binary 
pattern belonging to family of B as described in Eq. 
3. The outcome of this viewpoint is cut-off value 
given by Eq. 6. 

 Kmax = minimum n | X ⊆ (n+1)B, or 

 Kmax = minimum n | { (n+1)B Ɵ X ≠ ∅}, (6) 



SHARMA S ET AL: Morphological characteristics of binary image 

116 

where n is non-negative integer. Clearly, Dn
asym = ∅ 

for n ≥ Kmax. The dealing of X against (n+1)B (and 
not nB) in Eq. 6 makes it consistent with model used 
in Eq. 4a, where iterations of smoothing start at n=0, 
resulting in smoothing of X by (n+1)B in nth iteration. 
Eq. 6 is primarily designed for both X and B to be 2-
D (Two-Dimensional), which is prime focus of our 
experimentation. However, it accommodates not so 
practical scenarios where X is 1-D (One-Dimensio-
nal) but B is 2-D. X and B both being 1-D is a trivial 
case. A scenario where X is 2-D and B is 1-D is also 
not very common. For such scenario, a minimum 
value of n such that (n+1)B supersedes longest 
anisotropic straight line which is subset of X, could 
be considered as Kmax. It is evident that K is strictly 
lesser than Kmax. The accurate value of K precisely 
depends upon geometric constitutions of X and B, 
and happens to be far less than Kmax in most of the 
practical cases. 

EROSION ASYMMETRY AND 
SYMMETRY – GENERIC FRAMEWORK 

Analogous to previous sub-section, the disjoint 
patterns of erosion asymmetry and erosion symmetry 
could be realized by pervasion of zonal ring topology 
between X and XƟB (refer Eq. 2c) to Xn and XnƟB, 
where n is non-negative integer, and Xn (= XƟnB) is 
generic input image for nth iteration of multiscale 
smoothing by contraction. The generalized versions 
En

asym(X) and En
sym(X) (or simply En

asym and En
sym as 

referred further) of erosion asymmetry and symmetry 
respectively derived with this approach are: 

 En
asym(X) = (X Ɵ nB) – (X Ɵ nB) oB.   (7a) 

 En
sym(X) = (X Ɵ nB) oB – (X Ɵ (n+1)B). (7b) 

The iterations start from n = 0. X shrinks as iterations 
of multiscale smoothing by contraction proceed, and 
it is evident that maximum possible iteration Nmax is 
identified by ultimate erosion of image, i.e.: 

Nmax = n | {(X Ɵ nB ≠ ∅) ^ (X Ɵ (n+1)B = ∅)}.  (8) 

Observe from Eq. 7a and Eq. 8 that erosion 
asymmetry for n = Nmax is a non-empty set equals to 
(XƟNmaxB). Now as we have identified Nmax, going 
by analogy of previous sub-section, can we think of a 
upper threshold on n, which is denoted by N and 
represent the maximum (or last) iteration in which 
smoothing of X by contraction occurs? The answer is 
that depending upon geometry of X and B, the 
ultimate erosion of X may occur well before its 
complete smoothing, and accordingly N may or may 
not exist. So, in some scenarios, we may obtain Nmax 
without obtaining N. However, N may exist in some 

cases, and could be conceptualized as an iteration 
such that input image Xn is perfectly erosion 
symmetric to B for n∈(N, Nmax); i.e., En

asym is ∅ in 
open interval (N, Nmax). Xo (N+1)B is the smallest 
non-empty opened version of X obtained by 
multiscale smoothing, if N exists.  

En
asym and En

sym are mutually disjoint as is per-
ceptible from Eqs. 7a,b; and their union is a zonal 
ring between XƟnB and XƟ(n+1)B. 

En
asym(X) U En

sym(X) = (X Ɵ nB) – (X Ɵ (n+1)B).  (7c) 

Conspicuously, Eq. 7a replicates morphological 
skeleton transform (Lantuejoul, 1980) of discrete 
binary image X, which is depicted here as asymmetry 
of shrinking topological zonal rings. Now onwards, 
the usage of term erosion asymmetry in essence could 
be contemplated as morphological skeleton. Maragos 
(1989) proposed reduced skeleton transform (RST) 
which may eliminate some skeleton redundancy in 
few cases depending on choice of X and B, and is 
compatible with pattern spectrum. The upper threshold 
value N (if it exists as explained above), obtained 
from RST based model may slightly differ in some 
scenarios than the one obtained from skeleton based 
model (Eq. 7a). We adopt skeleton based model in 
this paper on similar lines as explained in previous 
sub-section. 

Apparently, the generalized version of results 
summarized in Fig. 2 of previous section are 
((XƟnB)oB)oB = (XƟnB)oB, and (XƟ(n+1)B)•B = 
XƟ(n+1)B. Eqs. 9a,b demonstrate more generic 
flavor, known as absorption property, on account of 
erudition that an opening by nB removes entire 
asymmetry of and up to size nB out of X. 

 (X o  nB) omB = (X o  nB) ∀ m ≤ n, (9a) 

 (X Ɵ nB) •mB = (X Ɵ nB) ∀ m ≤ n, (9b) 

where m, n are non-negative integers. 

SHAPE SIZE TOPOLOGY - 
CLOSE HULLS AND OPEN 
SKULLS OF IMAGE 

CLOSE-HULLS IN BACKGROUND 
SMOOTHING 

Let us consider multiscale closing of X in close 
interval [0, Kmax], which in previous section was 
derived as potential integral range of iterations for 
multiscale smoothing of X by expansion. The closed 
version X• kB corresponding to iteration count k is 
regarded as a close-hull (or only hull as we often 
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refer it further) of X if condition X• kB = X• (k+1)B 
is satisfied. This condition could be achieved by 
replacing Dn

asym as ∅ for n = k in Eq. 4a. Con-
sequently, an empty dilation asymmetry set for an 
iteration of smoothing in Eq. 4a ensures that a close-
hull exists corresponding to this iteration. Apparently, 
the mentioned condition for a hull could be 
potentially satisfied for multiple iterations in [0, 
Kmax], which implies that there may be multiple hulls 
of X. An interesting point of observation is that if a 
hull condition is satisfied for n>0; the corresponding 
input image X⊕nB in Eq. 4a for this iteration is 
stable with reference to opening and closing by B, 
i.e., (X⊕nB) oB = (X⊕nB) = (X⊕nB)•B. 

Now, we first define ‘degree of stability’ of a 
close-hull; and then will refine close-hull condition as 
per this definition. The degree of stability of a hull, 
which is obtained corresponding to iteration count k, 
is defined as number of successive iterations 
immediately after k for which dilation asymmetry 
does not appear. If degree of stability for this hull is 
s; then X• kB = X•  (k+1+i)B, 0 ≤ i ≤ s. In other 
words, there exists null asymmetry pattern for 
discrete size interval [(k+1)B, (k+s+1)B]. Obviously, 
iterations corresponding to degree of stability do not 
stand up for a new hull; and to avoid any such 
confusion, we refine condition to achieve hull as 
follows. The closed version X• kB corresponding to 
iteration count k is regarded as a hull of X, if 
condition in Eq. 10 is satisfied. 

{X • kB = X • (k+1)B} ^ {X • (k-1)B ≠ X • kB}, (10) 

where k is a non negative integer in [0, Kmax] as we 
said earlier. There is a fair possibility that first hull of 
image is obtained at k = 0 itself, and condition (Eq. 
10) is truncated to X = X•B for this case. 

Let’s denote iteration count for first hull by K1 
and its degree of stability by S1. In general, S1 could 
be much less than (Kmax - K1), and hence dilation 
asymmetry appears again at (K1+S1+1)th iteration. If 
reappeared dilation asymmetry persists continuously 
for T1 iterations before disappearing again, then 
iteration count K2 for second hull will be 
(K1+S1+T1+1). This pattern may repeat depending 
upon geometry of X and B as we iterate further till 
Kmax and multiple hulls of X could be obtained. Let 
M be a positive integer denoting maximum number 
of hulls of X, and Ki (0 ≤ Ki ≤ Kmax) be the iteration 
count for which ith hull (1 ≤ i ≤ M) is obtained as per 
condition in Eq. 10. So, X•KMB is maximum 
possible hull of X, i.e., X• nB = X•KMB ∀ n > KM, 
and there will be no more smoothing of X by 
expansion in further iterations till Kmax (if KM < Kmax) 

or beyond. In other words, all iterations succeeding 
KM belong to degree of stability of maximum hull, 
and hence its degree of stability could be considered 
as infinite assuming image has huge background. In 
previous section, we denoted K as maximum (or last) 
iteration in which smoothing of X by expansion 
occurs, and hence K= KM-1. 

Iterations K1 to KM, corresponding to hulls, are 
measure of scale invariant but shape dependent 
characteristic of background of X. Iterations Ki, along 
with degree of stability of hulls, which we denote by 
Si for ith hull (1 ≤ i ≤ M), exhibit shape-size topology 
of background of X. 

Algorithm (1) below, which computes total 
number M of hulls along with Ki and Si (1 ≤ i ≤ M) 
values for these hulls, has a linear complexity. It 
requires image X, structuring element B and Kmax 
(obtained as per Eq. 6) as input parameters; and 
assumes that X has enough background to hold 
dilations till Kmax. As degree of stability of maximum 
hull theoretically is infinite, Alg. 1 refrains to com-
pute the same. Let INPUT_IMAGE, DILATED_ 
IMAGE and CLOSED_IMAGE denote the sets 
indicating input, dilated and closed image respecti-
vely for a generic iteration during background 
smoothing. Let n, hull_count and degree_of_stability 
indicates generic iteration count, hull number and 
degree of stability of hull respectively. Let 
last_iteration_closed_input_image_same be a flag 
indicating if closed and input images for previous 
iteration were same or not. 
Algorithm (1): Computing Background Topology of Image 
Initialization: 
INPUT_IMAGE= X; n= 0; hull_count= 0; degree_of_stability 
= 0; last_iteration_closed_input_image_same= false; 
for n=0..Kmax do 
    DILATED_IMAGE = INPUT_IMAGE⊕B; 
    CLOSED_IMAGE = DILATED_IMAGEƟB; 
    if (CLOSED_IMAGE == INPUT_IMAGE) then 
        if (last_iteration_closed_input_image_same == true) 
then 
            // Increment degree of stability of current hull. 
            degree_of_stability ++; 
        else 
            // This iteration corresponds to a new hull. 
            hull_count ++; 
            M = hull_count; 
            Khull_count = n; 
            // Set flag for upcoming iterations. 
            last_iteration_closed_input_image_same = true; 
        end //if(last_iteration_closed_input_image_same == true) 
    else 
        // Iteration indicates non-empty dilation asymmetry either 
        // between image and first hull or successive hulls. 
        if (last_iteration_closed_input_image_same == true) then 
            //Store & reset degree of stability of current hull. 
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            Shull_count = degree_of_stability; 
            degree_of_stability = 0; 
            // Reset flag for upcoming iterations. 
            last_iteration_closed_input_image_same = false; 
        end //if(last_iteration_closed_input_image_same == true) 
    end // if (CLOSED_IMAGE == INPUT_IMAGE) 
    INPUT_IMAGE = DILATED_IMAGE; 
end // for 

Alg. 1 could be easily modified for ERST model 
(Maragos, 1989). This model, depending upon geo-
metry, may have slight difference in some values of 
Ki and Si for few combinations of X and B. 

OPEN-SKULLS IN FOREGROUND 
SMOOTHING 

Applying cognitive resemblance to close-hull, an 
opened version Xo nB corresponding to iteration 
count n of multiscale smoothing by contraction is 
conceptualized as an open-skull (or only skull) of X, 
if condition in Eq. 11 is satisfied. 

{X o nB = X o (n+1)B} ^ {X o (n-1)B ≠ X o nB},  (11) 

where n is a non negative integer in close interval [0, 
Nmax], which is range of iterations of multiscale 
smoothing of X by contraction as derived in previous 
section. Apparently, there may be multiple iterations 
in [0, Nmax] satisfying condition of Eq. 11, and hence 
there may be multiple skulls of X. The pruned 
version of Eq. 11, to monitor if (first) skull is 
obtained at n=0 itself, is X = X oB. In logical 
correlation to degree of stability of a hull, the degree 
of stability of a skull obtained corresponding to 
iteration count n, is defined as number of successive 
iterations immediately after n for which erosion 
asymmetry does not appear. If we again denote s as 
degree of stability of this skull, then Xo nB = 
Xo (n+1+i)B, 0 ≤ i ≤ s. Condition in Eq. 11 ensures 
that iterations corresponding to degree of stability of 
existing skull are not interpreted as new skull. The 
model proposed in Eq. 7a together with check in Eq. 
11 indicates that an iteration resulting in empty 
erosion asymmetry set corresponds to either a new 
skull, or degree of stability of existing skull. For such 
an iteration, a parity condition, i.e., (XƟnB)•B = 
(XƟnB) = (XƟnB) oB is attained, provided n is 
strictly greater than 0; and the same is visible from 
Eq. 7a and Eq. 9b. 

As we have discussed skull in near resemblance 
to hull; it is good to point a contrasting fact that (at 
least one) hull exists for any finite image (assuming 
enough big image background), however there may 
be cases where an image has no skull depending upon 
the choice of structuring element. Having said that; 
we continue with generic case where X may have 

multiple skulls in [0, Nmax]. Let M be a positive 
integer denoting maximum number of skulls of X, 
and Ni (0 ≤ Ni < Nmax) be the iteration count for which 
ith skull (1 ≤ i ≤ M) is obtained as per Eq. 11. So, 
XoNMB is ultimate (last) skull of X. In previous 
section, we conceptualized maximum iteration N of 
smoothing of X by contraction. For cases where N 
exists, N = NM-1, and Xo nB = X oNMB ∀  n∈[NM, 
Nmax]. We know that erosion asymmetry always 
persists for n = Nmax ; and hence the last skull has 
finite degree of stability by definition. For cases 
where N exists, degree of stability of last skull is 
(Nmax-1-NM). Degree of stability of last skull is less 
than (Nmax-1-NM) for cases where N does not exists. 

Iterations N1 to NM are measure of scale invariant 
but shape dependent characteristic of foreground of 
X. These iterations along with degree of stability Si (1 
≤ i ≤ M) of skulls represent shape-size topology of 
foreground of X. 

Algorithm (2) computes total number M of skulls 
of image X, along with their Ni and Si (1 ≤ i ≤ M) 
values. Let INPUT_IMAGE, ERODED_IMAGE and 
OPENED_IMAGE denote the sets indicating input, 
eroded and opened image respectively for a generic 
iteration during foreground smoothing. Let n, 
skull_count and degree_of_stability indicates generic 
iteration count, skull number and degree of stability 
of skull respectively. Let last_iteration_open_input_ 
image_same be a flag indicating if opened and input 
images for previous iteration were same. 

Algorithm (2): Computing Foreground Topology of Image 
Initialization: 
INPUT_IMAGE= X; n=0; skull_count= 0; 
degree_of_stability = 0; 
last_iteration_open_input_image_same= false; 
while (1) do 
    ERODED_IMAGE = INPUT_IMAGEƟB; 
    if (ERODED_IMAGE == ∅ ) then 
        Nmax = n; 
        if (skull_count > 0) then 
            if (degree_of_stability > 0) then 
                // All iterations in (NM, Nmax) belong to stability of 
                // last skull. Note that default value of stability is 0. 
                Sskull_count = degree_of_stability; 
            end; // (degree_of_stability > 0) 
        end // if (skull_count > 0) 
        break; // exit of algorithm 
    end // if (ERODED_IMAGE == ∅) 
    OPENED_IMAGE = ERODED_IMAGE⊕B; 
    if (OPENED_IMAGE == INPUT_IMAGE) then 
        if (last_iteration_open_input_image_same == true) then 
            // Increment degree of stability of current skull. 
            degree_of_stability ++; 
        else 
            // A new skull. 
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            skull_count ++; 
            M = skull_count; 
            Nskull_count = n; 
            // Set flag for upcoming iterations. 
            last_iteration_open_input_image_same = true; 
        end // if (last_iteration_open_input_image_same == true) 
    else 
        // Iteration indicates non-empty erosion asymmetry either 
        // between image and first skull or successive skulls. 
        if (last_iteration_open_input_image_same == true) then 
            //Store & reset degree of stability of current skull. 
            Sskull_count = degree_of_stability; 
            degree_of_stability = 0; 
            // Reset flag for upcoming iterations. 
            last_iteration_open_input_image_same = false; 
        end // if (last_iteration_open_input_image_same == true) 
    end // if (OPENED_IMAGE == INPUT_IMAGE) 
    INPUT_IMAGE = ERODED_IMAGE; 
    n = n+1; 
end // while(1) 

Alg. 2 could be easily modified for RST model 
(Maragos, 1989), which may have slight difference in 
some values of Ni and Si in few cases. 

In essence, here we discussed multiple hulls and 
skulls of an image during multiscale analysis. Critical 
scales in terms of iterations Ki and Ni corresponding 
to hulls and skulls are entrenched, and concept of a 
locally stable or silent zone, where hulls and skulls 
stabilize for certain scale-interval is introduced. This 
literally means that scale-intervals [Ki , Ki+Si] and 
[Ni, Ni+Si] in a typical size distribution or pattern 
spectrum plot reflect a straight line coinciding to axis 
representing size of closing and opening respectively. 
We also furnish algorithms to compute foreground 
and background topology of image in terms of these 
salient scales. 

EMPIRICAL ANALYSIS 

HULL AND SKULL BASED 
CHARACTERIZATION OF FRACTAL 
OBJECTS 

We applied Alg. 1 on deterministic and random 
binary Koch quadric fractals of Fig. 3. Table 1 shows 
the results with B as symmetrical flat structuring 
element of primitive size 3x3, containing 4 neighbors 
and rhombic in shape. For deterministic fractal: M = 
6, KM = 62 and hence K (= KM-1) is 61. The number 
of successive iterations for which dilation asymmetry 
persisted e.g. between first and second hull of 
deterministic fractal is K2-(K1+S1+1), i.e., 7 (iteration 
12 to 18 both inclusive). We discussed earlier that 
depending upon geometric constitutions of X and B, 
the value of Kmax may be much higher than K, which 
exactly is reflected for deterministic and random 

fractals with Kmax value at 220 and 180 respectively. 

Observe that a considerable 29 (=∑
−

=

1

1

M

i

Si + M) out of 

total 63(=KM+1) iterations in case of deterministic 
fractal corresponds to empty dilation asymmetry sets, 
but this number is not so high for random fractal. 

 

Fig. 3. (a) Deterministic and (b) random binary Koch 
quadric fractals (both 1024 x 1024 pixels). 

Applying Alg. 2 on deterministic and random 
binary Koch quadric fractals of Fig. 3 with exactly 
same rhombic structuring element yields the results 
as shown in Table 2. We obtained the Nmax value for 
deterministic and random fractal as 63 and 54 
respectively; which implies that degree of stability of 
last skull is less than (Nmax-1-NM) for both these 
cases, and hence N does not exists. A simple example 
where N exists is circular image with exterior spikes 
on its boundary. The number of successive iterations 
for which erosion asymmetry persisted e.g. between 
first and second skull of random fractal is N2-
(N1+S1+1), i.e., 1 (iteration number 20). Again, notice 

that 26 (=∑
=

M

i 1

Si + M) out of total 64(=Nmax+1) 

iterations for case of deterministic fractal corresponds 
to empty erosion asymmetry sets, and this number is 
pretty low for random fractal. 

The ERST and RST model (Maragos, 1989) 
yields no impact on results of Table 1 and Table 2 
respectively. Notice that the choice of rhombic 
structuring element, especially for deterministic fractal, 
establishes a very close equilibrium between the values 
obtained for skulls and their background counterparts, 
i.e., hulls, as is evident from Tables 1 and 2. 

For deterministic fractal of Fig. 3a, a flat square 
structuring element of primitive size 3x3 yields 10 
hulls and 3 skulls, while a flat octagonal structuring 
element (primitive size 5x5) yields 3 hulls and 1 
skull. For random fractal of Fig. 3b, square structu-
ring element yields 2 close-hulls and 1 skull. In 
general, the model given by Alg. 1 and Alg. 2 could 
be applied to any image, resulting in one or more 
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hulls and zero or more skulls depending upon choice 
of X and B. 

Table 1. Background Shape Size Topology of (A) 
Deterministic and (B) Random Binary Koch Quadric 
Fractals of Fig. 3. 

 (A)    (B)  
Hull 
No. i Ki Si 

 Hull 
No. i Ki Si 

1 11 0  1 14 1 
2 19 2  2 27 0 
3 25 2  3 33 2 
4 35 1  4 46 0 
5 42 18  5 49 ∞ 
6 62 ∞     

 

Table 2. Foreground Shape Size Topology of (A) 
Deterministic and (B) Random Binary Koch Quadric 
Fractals of Fig. 3 

 (A)    (B)  
Skull 
No. i Ni Si 

 Skull
No. i Ni Si 

1 12 1  1 19 0 
2 20 2  2 21 0 
3 26 2  3 37 0 
4 36 0  4 41 4 
5 41 13  5 47 0 
6 58 2  6 49 1 

 

HULL AND SKULL BASED 
QUANTIFICATION OF IMAGE 
TEXTURE 

We know that granulometries, and their discrete 
derivatives referred as size distribution (Matheron, 
1975) or pattern spectra (Maragos, 1989), provide 
information regarding shape and size, and play im-
portant role in image texture analysis and pattern 
classification. Iterations corresponding to hulls and 
skulls reflect critical scales, and being these scales the 
quantifiers, we define hull and skull based discrete 
derivatives for zonal classification (of background 
and foreground respectively) of image. These deriva-
tives are termed as Hull Fragment Pattern Spectrum 
(HFPS) and Skull Fragment Pattern Spectrum (SFPS) 
and are defined as: 

HFPSi(X) =
⎩
⎨
⎧

≤≤•−•
=−•
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ii 2
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where HFPSi and SFPSi are ith hull and skull 
fragment pattern spectrum of X respectively. A(.) 
indicates area of finite image under consideration. As 
stated earlier in last section, Ki and Ni is iteration 
count for which ith hull and skull is obtained, and M 
denotes maximum number of entities (i.e., hulls in 
Eq. 12 and skulls in Eq. 13) under consideration. 
Notice that there are M hull fragments of an image 
having M hulls, while the number of skull fragments 
of an image having M skulls is M+1, as the last (i.e., 
Mth) skull itself is a fragment. 

Hull and skull fragment pattern spectra represent 
respectively gain and loss of areas between two 
successive hulls and skulls. The resulting curve of a 
plot between HFPSi and Ki (similarly between SFPSi 
and Ni) indicates fragment-wise areal distribution 
pattern with size interval for each fragment. The 
peaks and valleys of these curves reflect fragment 
with maximum and minimum area respectively. Fig. 
4 shows these plots for deterministic Koch quadric 
fractal (Fig. 3a). The first hull fragment has 
maximum area and the sixth one has minimum. For 
the fractal foreground, the curve specifies that first 
skull fragment has maximum area while the third, in 
close contest to sixth, has minimum. Notice a dwarf 
hull fragment from Fig. 4a between iteration 42 and 
62, which is due to high degree of stability of fifth 
hull as is obvious from Table 1A (K5=42 and S5=18). 
Similarly, as per plot of Fig. 4b, a little area of skull 
fragment between iteration 41 and 58 is result of high 
degree of stability of fifth skull as is evident from 
Table 2A (N5=41 and S5=13). 

 
Fig. 4. (a) Hull fragment, and (b) skull fragment wise 
pattern spectrum of deterministic binary Koch quad-
ric fractal of Fig. 3a. 

As maximum close-hull of image tends towards 
convex-hull, a comparison of concavity to convexity 
of image could be obtained by comparing respecti-
vely the sum of hull fragment pattern spectra and 
skull fragment pattern spectra. Table 3 shows this 
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comparison for deterministic fractal (Fig. 3) using 
multiple structuring elements. Octagonal structuring 
element (with 21 pixels) is less anisotropic (Soille, 
2003) than primitive rhombus and square structuring 
elements, and yields a maximum hull, which is much 
closer to convex-hull of deterministic fractal, as is 
clear from concavity to convexity ratios in Table 3 
and also from Fig. 5. By adding topological dimen-
sion 1 to these scale invariant but shape-dependent 
concavity-convexity ratios, results yield 1.438, 1.482, 
and 1.506. It is noted that the octagon-based analysis 
yields 1.506, which is close to the analytical fractal 
dimension value, i.e., 1.5; of the deterministic Koch 
quadric fractal. Fig. 5 shows maximum close-hulls of 
this deterministic fractal for structuring elements 
employed. 

Table 3. Comparison of Concavities and Convexities 
of Deterministic Binary Koch Quadric Fractal of Fig. 
3. (Rhombus and Square Structuring Elements are of 
size 3x3 and Octagon is of size 5x5) 

Structuring 
Element 

Type 
∑HFPS ∑SFPS 

Concavity 
to convexity 

ratio 
Square 29169.5 66633.5 .438 

Rhombus 32109.625 66633.5 .482 
Octagon 33748.875 66633.5 .506 

 

 
Fig. 5. Maximum close-hulls of deterministic binary 
Koch quadric fractal of Fig. 3a for (a) square (M = 
10, KM = 31) (b) rhombus (M = 6, KM = 62) and (c) 
octagonal (M = 3, KM = 42) structuring elements. 

The hull and skull fragments based model exhi-
bits characteristics which are invariant of the scale of 
image but dependent upon shape of structuring 
element. For example, a sequence of skull and hull 
fragments can be seen from Fig. 6a-l for deterministic 
fractal of Fig. 3a, and even a variation in scale of this 
image yields a similar primary texture with rhombic 
shape (Fig. 6a) followed by a pattern similar to Fig. 
6b-l given structuring element is the same. Because 
of shape dependent characteristics of this model, the 
texture obtained corresponding to Fig. 6 will be 
totally different if a different (e.g. flat square) 
structuring element is applied to deterministic fractal. 
Notice that the shape and size of primary texture (e.g. 

the one of Fig. 6a) depends upon the choice of 
structuring element and a scale driven by NM value 
respectively. To be precise, Fig. 6a contemplates 
XoNMB (refer Eq. 13) and will be of square shape if 
used structuring element is square. 

 

Fig. 6a-g skull fragments (in order from centre 
towards boundary of object), and (h) to (l) visible 
hull fragments (in order starting from object boun-
dary and growing outwards) of deterministic fractal 
of Fig. 3a. Rhombus of primitive size 3x3 is used as 
structuring element. Max. (i.e. 6th) hull fragment is 
too small as is conspicuous from Fig. 4a and not 
shown. 

The hull and skull fragments based model could 
be utilized for image analysis, especially for images 
with systematic disorder. Fig. 6a-l reflects an ordered 
pattern in sequence of zonal fragments. This is due to 
systematic disorder in overall texture of deterministic 
fractal and will certainly not exist for all images (e.g. 
random fractal) under consideration. 

CONCLUSIONS 

This paper re-visits morphological ridge and skeleton 
transforms with a flavor of dilation and erosion 
asymmetry, followed by discussion on multiple hulls 
and skulls of an image. We provide a morphological 
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model to quantify image and its background based 
upon potential critical-scales, which demonstrate a 
sort of local stability in image texture. This local 
stability could be interpreted as invariance of image 
against certain scales during successive morphologi-
cal opening and closing transforms. This phenomenon 
sometimes may persist consistently for a scale-inter-
val. In summary, the proposed model comes handy in 
topographical analysis of image as well its backg-
round, and accordingly provides a tool for zonal-
decomposition. The model exhibits scale invariant 
but shape dependent characteristics and is very effec-
tive for analysis of images having systematic disorder 
in overall texture. In particular, we can consider e.g. 
geospatial objects under this category where topo-
graphic characteristics stabilize locally for certain 
scale-interval, and proposed model could be handy to 
study the spatio-temporal stability of such objects. 
Though the paper demonstrate binary images as 
experimental prototype, all the concepts are appli-
cable for gray tone images as well. There exists a 
scope for follow-up work in consideration of few 
aspects, e.g. a) possible usage of multiscale index 
(identified by ratio KM/NM, or preferably KM/Nmax) of 
an image for a given shape as a measure of back-
ground versus foreground complexity b) characteri-
zing fractal dimension via morphological operations c) 
applying the work in this paper to grayscale domain. 
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