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ABSTRACT

In the literature on point processes the by far most popudtion for introducing inhomogeneity into a point
process model is the location dependent thinning (resuitira second-order intensity-reweighted stationary
point process). This produces a very tractable model amd tre several fast estimation procedures available.
Nevertheless, this model dilutes the interaction (or thenggtrical structure) of the original homogeneous
model in a special way. When concerning the Markov point psses several alternative inhomogeneous
models were suggested and investigated in the literaturd.itBs not so for the Cox point processes, the
canonical models for clustered point patterns. In the daution we discuss several other options how to
define inhomogeneous Cox point process models that requdiim patterns with different types of geometric
structure. We further investigate the possible parameténation procedures for such models.

Keywords: Cox processes, inhomogeneity, moment estimgb@rameter estimation, spatial point processes.

INTRODUCTION eg., cell tissues or advanced materials like sinter

filters with gradient structure — seeg., Hahnet al.,

In this paper we want to discuss the problem2003for examples) it is necessary to have a correct
of introducing inhomogeneity into spatial Cox inhomogeneous model. On the other side, the type of
point processes. In contrast with the Markov pointdata usually modelled by Cox point processes (like
processes, where several models with different typegifferent plant communities in ecology) do not usually
of inhomogeneities (or different mechanisms howexhibit interactions strong enough to make the misfit
to introduce inhomogeneity into the homogeneousve get by fitting the location dependent thinning type
model) were introduced (seeg., Jensen and Nielsen inhomogeneity obvious at first sight. Thus the misfit is
2001 for the overview), looking through the paperspragmatically ignored in the applications.
about Cox point processes we see that the only o
used type of inhomogeneous model is the location L&t us start by explaining what we mean
dependent thinning (resulting in the so-calledPy different geometrical structure. In Fidl, we

second order intensity reweighted point processS€® examples of realizations of four different
Baddeleyet al., 2000. inhomogeneous hardcore point processes with the

S same intensity function.
There are two reasons for this situation. The

first is the simplicity and tractability of moment
estimation procedures for the parameters of the
location dependent thinning model whereas for other..
kind of inhomogeneities it is not clear what to do since |,

the models are highly “nonlinear” in nature. We will |-,
show in the sequel that certain approximations can deg. .. "’ -
with this problem and itis possible to derive reasonablef:. ", *. .

parameter estimators also for the more complicated.. ., .* .. ]
inhomogeneities. Ry

The second reason is that by Markov point [%:. 5
processes with strong negative interactioreg.(
hardcore interaction) it is clearly visible that different
types of inhomogeneities produce point patterns withrig. 1. Examples of different inhomogeneous Markov
very different geometrical structure. Which means thapoint processes with the same intensity function. For
for fitting the data with such strong interactions (like, details see the text.
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PROKESOVA M: Inhomogeneity in spatial Cox point processes

The inhomogeneity was introduced into the model
by (from left to right) an inhomogeneous first-
order potential Qgata and Tanemurd 986, location
dependent thinning Baddeleyet al., 2000, a 1-1
spatial transformation of the homogeneous point
pattern Nielsen and Jenser2004 and by location
dependent scalindahnet al., 2003.

When examining the point pattern produced by
location dependent thinning we see that this model |
dilutes the interaction (or the geometrical structure) |%
of the original homogeneous model in a special way
— the repulsive interactions so obvious in the area
with high intensity are hardly recognizable in the aredgrig. 2. Examples of different inhomogeneous shot-
with low intensity — the point pattern there looks noise Cox point processes with strong interactions and

almost like a Poisson point process. All the otherhe same intensity function. For details see the text.
models preserve more interactions in the area with

low intensity,i.e., more from the geometrical structure
of the homogeneous version of the hard-core model.
The other extreme is the point pattern produced by
location dependent scaling which keeps the same
geometrical structure in any part of the observation
window independently of the intensity function.

The fact, that the situation is similar also for the
Cox point processes is illustrated in Fig.where
we can see realizations of several shot-noise Cox |
processes with the same first order intensity function.
All three processes were derived from the same
homogeneous Thomas process but different types of
inhomogeneity were used.

Here we can see the location dependent thinninfji9- 3. Examples of different inhomogeneous shot-
type inhomogeneity in the middle panel and again wé0ise Cox point processes with moderate interactions
observe the dilution of the clusters in the area with@nd thesameintensity function. For details see the text.
low intensity. The point pattern in the low intensity
area looks not like a cluster process but almost like

a Poisson process. The other two point patterns are Concerning the estimation of the models we
obviously different — the left one having the sameg|ready said that the reason, why the location
clusters but distributed inhomogeneously in the Spacgependent thinning models are so popular, is the
the right one showing a location dependent scalingjmplicity of moment estimation in such models. The

type of behaviour where the point patterns in areagigher order intensity functions® (xq, ..., xy), k > 2
W|th dlf‘fel’ent intenSity IOOk I|ke Scaled COpIeS Of the are namely equal to the product o

same homogeneous template process. The clustered

nature of the point pattern is preserved also in the areas ® K

of low intensity. We will discuss the exact models from P (X, %) = PH(XLs -5 %) _HP(Xi) (@
which the point patterns were generated in detail later 1=

in the paper. of the k-th order intensity function of some

Nevertheless the differences between the differerfiomogeneous point process and the product of the first
inhomogeneities become less pronounced when thgder intensity function of the thinned process) =
interactions are weaker.¢., the clustering is weaker). p™(x) for the pointsx; from the point configuration
Fig. 3 shows what happens if we double the scale ok = (x1,...Xc). And this fact makes it possible to
the clusters (of the homogeneous template) and keegstimate first the inhomogeneity e, the (first
the rest of the model parameters the same as in2rig. order) intensity functiorp, and then conditionally on
Here we still can see the differences in the geometricahis estimate to proceed with the estimation of the
structure in the areas of low intensity but the differencenteraction parameters from the higher order intensity
is not as obvious as in Fig. functions in the same way as in the homogeneous case.
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However this strategy is not applicable to the otheu # v. Higher order intensity functions are defined
types of inhomogeneities. There the inhomogeneityanalogically.
enters the model in a more “nonlinear” way, thus we

. If X is stationary i(e., its distribution is invariant
_do not have the product structure for the higher OrOIe\5vith respect to the simultaneous shifts of all the points
intensity functions.

in X), thenp(u) = p = const, and
But we can use other properties of the models for a
2-step estimation (_)f the mhomogenelty parameters and p<k) (U Ve, .. V1) =
subsequently the interaction parameters. For example K
in the transformation model we can estimate the p
o o e ensly unclon, IenS0M phus a th kin ordr ity functons can be
. . . a0 duced to equivalent functions of onljk — 1)
and then estimate the interaction parameters like 'grguments
the homogeneous caddiélsen and JenseB004). Or '
for the locally scaled model we can estimate the local In the stationary case two important summary
scaling function from the intensity function and thenstatistics, which are often used in the applications,
conditionally on this estimate of the inhomogeneityare defined by means of the second order intensity
parameters (parametrizing the local scaling functionjunction p(®. The so-called pair correlation function
use the pseudolikelihood methods to estimate thésometimes called simply ttgefunction) is defined by
interaction parameters of the mod@rokeSova et al.,
2009. Inspired by some of these ideas we derive two
step moment estimation procedures for several kinds
of inhomogeneous Cox processes.

(O,V]_—U,...,Vk_]_—u)- (4)

(2
gluy) =25 ©

and because of the reducibility (E4) of p@ it is

equivalent to a function of one argument
PRELIMINARIES gUV) —gUu—v), uveR?. ®)
We first recall the basic notions and introduce-l-

. : . X he fact that the correlation function of a stationar
our notation. For more detailed information see th y

epoint process depends only on the difference of the
standard reference3aley and Vere-Joned 989 and locationsu andv and not on the locations themselves is
Stoyanet al. (1993. an important property of the stationary point processes.
Let 2" C RY andX be a point process oft". For  In the sequel we will denote thg-function of a
a Borel sefAin RY |A| will denote the volume oA and  stationary process as a function of just one argument,
|X N A| the number of pointX has inA. ForanR >0 as is usual in the literature. For the Poisson point
we will denoteB(0,R) the ball centered in the origin process i(e., a process with no interactions) tlge
with radiusR. function is identically equal to 1g-function values
larger than 1 indicate positive correlation between the
occurrence of the points of the point process in the
locationsu, v, smaller values than 1 indicate negative
correlations.

For any given pointu € RY let du be the
infinitesimal region that contains the poind.
Following Diggle (2003 we can define the (first-order)
intensity functiono of X by

The second important statistic is tiefunction

defined by

E\deu\) B

= i
p(Y) |d5m0< |du

i.e, the mean number of points frob occurring in
du; and the second-order intensity functipf® (u,v)

K(r) = /| 1., PP 0/

= g(u)du, r>0,
by e &
@uv) = lim E[(XNdu)(XNdv)| 3) The K-function corresponds to the mean number of
P ~ |dul,jdv|—0 |dul|dv]| ' points of the point pattern in a baB(x,r) centered

in a random pointx of the point pattern divided by
When X is simple (it does not have multiple the intensity. Thus(r) = rr? for the Poisson point
points) then the intuitive meaning @?(-,-) is that  process ifR?, larger/smaller values d¢€-function than
p'@ (u,v)|dul|dv| is the approximate probability that 7r? indicating respectively clustering/inhibition in the
du and dv each contain a point fronX, where point process at range
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PROKESOVA M: Inhomogeneity in spatial Cox point processes

COX PROCESSES The first and second order intensity function are
given by
Let 2° C RY and{A(u),u € X} be a non-negative
random field. The well-known definition states that a p(u) = //rk(w, u){(dr, dw) (11)
oint processX on 2" is a Cox point process with '
pon’ P pon P p@(u,v) = p(u) p(v) (12)

the driving fieldA if conditionally onA = A, X is a

Poisson point process with the (first order) intensity +//F2k(W, u)k(w, v)Z (dr, dw) .
functionA. For the intensity functions then holds

K Example. The simplest example of a shot noise
p®(ve,... . W) =E I_l/\(vi) _ (7)  Coxprocess is the so-called modified Thomas process
i— (Thomas 1949 (in the sequel we will call it shortly a
Thomas process). [R? it is given by the choice

Z(dr,dw) = oy (dr)dw, (13)

aYvhere o, denotes the Dirac measure in, dw

The two most often used classes of spati , ith h b
Cox point processes are the log Gaussian Coj coration with respect fo the Lebesgue measure
and k(x) = exp(—||x||*/(20¢))/(2ro“) the bivariate

processesl\azlllleretzglc.), 1938 an:jhthe Eht%t noise Cobx normal kernel with scale parameter > 0. Thus it
processesMgller, 3. Even thoug ese can be corresponds to a superposition of clustefg:q Xw

generalized and unified in the framework ofuy whered is a stationar : A ;
y Poisson process with intensity
based Cox processelddlimundet al., 2008 for ease 1 (mother intensity) and each mother generates

of exposition we stick to the two classical models. 5 pgisson clusteK, of daughter points with mean
Let {W(u) :u e 2} be a Gaussian random number of daughter points in the cluster equalvto

field. Then the Cox proces$ with the driving field and probability distribution function of the location of

A(u) = exp(W(u)) is called the log Gaussian Cox the_daughter points relatlve_to its parent is a blvarl_ate

process. Since the distribution of the Gaussian fiel§@dially symmetric normal distribution. We can easily

W is completely determined by the mean value field!€rve thaip(u) = pv and

m(u) = EW¥(u) and the covariance functioz(u,v) = 2 B

Cov(¥(u),¥(v)) sois the distribution oX and it holds G

2,,2 1 _HU—VHZ
Hev <1+ Ao exp 202 . (14)

A Cox point process is stationary if and only if the
driving field is stationary.

P —exp(mu)+ joww)) . ®

P*(uv) = p(W)P(Y) exp(e(u V) - ®  LOCATION DEPENDENT
_ ~ THINNING
The other class of shot noise Cox processes is
defined by the driving field\ of the form Now we review the most popular type of
inhomogeneity in spatial point processes and the
A(u) = z rk(w,u) . (10)  moment estimation methods available for this type of
(rwed (parametric) models.

Let 2° C RY and X be a homogeneous point
process onZ” (by homogeneous we mean stationary
- for 27 = RY, or a restriction of a stationary point
process t0o2" c RY) and letp: 2" — [0,1] be a
éunction onZ%’. LetY be the point process

Here k is a kernel,i.e, a measurable, nonnegative
function onRY x RY such thatk(w, -) is a probability
density for allw, and ® is a Poisson point process
on (0,0) x 2" with a locally integrable intensity
measure. Thus the shot noise Cox process has th
same distribution as the superpositighy w)ceo X(rw) Y={xeX:RX) <pXx)}, (15)

of independent Poisson proces3gs,) with intensity whereR(x) ~ Uniform|0, 1] are i.i.d. random variables

functions rk(w,-). The shot noise Cox process ISindependent ofX. ThenY is a location dependent

stationary it the _mea_lsuré’ IS tr_anslat|or_1 Invariant thinning of X with retention probabilitiep(x). ForY
with respect to shifts in the spatial coordinatec .2 then holds

and if the kernelk is invariant under simultaneous ’
translations in both coordinates, thus being just a (k) (! _
function of the differencé(w, u) — k(w—u). Ay (Ve W) = P (Ve MO ] POW) - (16)
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which implies Eq.1 and it is possible to define After the reparametrizatiofy = log(uv/M) we have

consistently an inhomogeneous version of
functlion g | ’ e e p(u) = pg(u) =exp(Bo+2zuB") .  (23)
. Our inhomogeneity parameter is thBn= (o, ... Bk)
u,v and interaction parametér= (u, o).
gi(U,V):gi(U—V):M, ( 7) . p . (IJ )
p(u)p(v) The estimation in such models then proceeds as

. . follows: we estimate the inhomogeneity parameter
which depends only ofu—v) and the inhomogeneous ; . g )'/'p
K -function B from the first order moment propertidse., by

maximization of the Bernoulli composite likelihohg
Ki(r):/ gi(u)du, r>0, (18)
[Jul|<r

derived from the first order intensity function

La(B)=exp( [ pawiu) ] ppt9. @4
which is equal to theK-function of the original z xeYNZ

unthinned procesx. Like for the stationary processes If there is a unique8 which maximized_g we can get
the inhomogeneoug-functiong; will be denoted as a it as the solution of the estimating equation

function of only one argument. d(Iogpﬁ( ) d(Iogp[;(x)) o
Let us remark here, that processes derived by z d -/, d pp(u)du=0.
- o Sara B Z B

location dependent thinning are not the only ones for "'~ (25)

which Eq.17 defines consistently the inhomogeneousrys s an unbiased estimating equation for processes
g-function. The construction works for a t_)roadgrof location dependent thinning type. Note thaj is
class of processes called second-order intensitysqyq|ly equal to the likelihood of an inhomogeneous
reweighted stationary (SOIRS) point processes. Theggyisson process with intensity functigm (u). Thus
were introduced irBaddeleyet al. (2000, as was the the estimate of the first-order paramefers obtained
inhomogeneoug-function. Nev_ertheless the SOIRS by ignoring the interactions in the point procegs
processes do not generally fulfill Efjfor k > 2. In the sequel we will denote = p;. Asymptotic

Let us now suppose that the point process modgiroperties of the estimatog were investigated in
is parametrized by a vector parameteconsisting of Waagepeterse2007) and Waagepetersen and Guan
two subvectorsp = (8, 0), wheref parametrizes the (2009.

thinning function pg(x) (inhomogeneity parameter) In the second step we estimate the interaction

and & parametr_izes the 0”9".‘3' ho_mogeneous pombarameteﬂ conditionally on3 = 3. There are several
processXy with fixed constant intensity. options, how to do this

Example. Inhomogeneous Thomas process with  The oldest one is the minimum contrast
log-linear intensity function Waagepeterser2007):  ostimation for theg: or K; function Diggle, 2003
Let 2 C R? Xg be a Thomas process with mother\yaagepetersen and Gua2009. Or we can use the
intensity 4, mean number of daughter points in acomposite likelihood approaciBan 2006 and find

cluster equal tov andk the bivariate normal kernel g 55 the argument of maxima for the composite (log)
with scale parameter. And letz(u) € R¥ be a vector likelihood function

of covariates that are recorded in the locatioa 2~

and let us define the retention probability logCL(6) =
_1 T [log(ﬁ(xm(y)ge(y—X))—
p(u) = -exp(z(w)BT) . (19) D I
whereM = max,c 2 (exp(z(u)BT). Then log (/y/y[)(u)ﬁ(v)gg(u—v)l (lJu=v|| <R) dudv)] ,
p(u) = % exp(z(u)BT) , (20)  wherel (-) denotes the indicator function aft> 0 is
2 ” a user specified tuning constant.
PV =p(Wp(V)G(u=v) (21) Another version of the composite log likelihood
andg;(u—v) = gg(u—V) is equal to ther-function of ~ function may be defined by
the homogeneous Thomas process logCL'(8) = > log (A(x)0(y)9e(y—X)) —
) XAyeYNZ,|Ix=y|I<R
1 Ju—vl| ) A
1 e — . 22 )
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PROKESOVA M: Inhomogeneity in spatial Cox point processes

This was introduced under the name of second ordehe covariance function of the corresponding Gaussian
object function inWaagepetersef2007). field W or equivalently it is completely determined by
the first and second order intensity function (since we
have the 1-1 correspondence given by the Bosnd

9). This means that as far as the covariance function
c(u,v) is translation invariant, the (inhomogeneous)
I%g Gaussian Cox procesX is of the location
dependent thinning type. For the case of the log-linear
intensity function dependent on the covariateg we

can reparametrize

Or we can apply a so called Palm likelihood
function Lp. This was recently introduced for the
stationary case byTanakeetal. (2007 and the
method is based on the Poisson approximation of th
likelihood of the process of differencgXNW) —
(XNW) between the observed points Xf Because
the intensity function of (X N W) — (XNW) is
expressed by means of the intensity of the Palm
measure oK the function A(u) = exp(z(u)BT +W(u)) , (27)

_ Y with  EW(u) = -c(0,0)/2 which means
logLe(0) X#yexm%’”)(7y“<Rlog(‘XQW|/\0(X %:6)) Eexp(LIJ(u)) =1 (Wis now a stationary Gaussian
field) and having the covariance function parametrized
—IX mW|/ I(]Ju]l < R)Ao(u;8)du, by 6 we can apply the estimation procedures from
R the preceding chapter. Since in the literature there
is called the (log)-Palm likelihood. For details see@® Not any cases with covariance function which
Tanakaet al. (2007. This method can be directly 1S not translation invariant we can conclude that all
generalized to the inhomogeneous case of locatiopractically usable log Gaussian Cox processes are of
dependent thinned processes if we define the location dependent thinning type.
) We would like to remark here, that the main
logLp = > log (A (y)ge (Y —X)) advantage of the log Gaussian Cox processes,
XAYEYNZ [|Ix—y||<R the simplicity of the specification of the model,
A changes to a disadvantage from the viewpoint of the
p(u)ge(u—x)du, modelling of point patterns with diverse geometrical
structure. Namely simple specification by onlyand
whereR > 0 is a tuning constant. The maximum Palmc corresponds to the full determination of the model
likelihood estimate o8 is the value which maximizes by only p(Y and p(?. It follows that all the higher
logLp = logLp(8). Further details and a simulation (> 3) order product intensity functions are determined
study comparing the methods introduced above can g the first and second order intensity functions and
found in (Prok&ova and Jensen, in preparation). consequently the possible geometrical structure of
. the resulting point patterns is highly restricted. Thus,
~ Example. For the inhomogeneous Thomas Procesg ., for modelling the first and third point pattern
with Iog-_llnee}r mtens@y function the (veqtor) first from Fig. 2 log Gaussian Cox processes are not a
order estimation equation (E85) becomes simply 4504 choice. Here one should use the shot noise Cox
processes which are more flexible.

T
(1,2(x)) = /%(1’ z(u))exp(BoJrz(u)ﬁ )du. We can introduce inhomogeneity in the shot noise
(26) Cox process in several ways. Let us suppose that

] _ _ fg: 2" — R" is a function bounded away from zero
The implementation of the composite orand infinity on2", parametrized by the inhomogeneity

Palm likelihood estimation of6 = (u,0) is then paramete3 andk and  are a translation invariant

straightforward when using the closed form ofkernel and an intensity measure d@,0) x 2

the g-function (Eg. 22). The last parametev is invariant with respect to shifts in the spatial coordinate

obtained fromf = log(uv/M) and the valueM = xc 2"

_ T
max,e 2 (exp(z(u)B’). We can define a model with a new kernel

k;} (V\I, U) = fB (U) k(W7 U) ) (28)

XeYn.2 /%QB(XR)

xeYNZ

INTRODUCING INHOMOGENEITY (thus the kernelk no longer integrates to 1,

INTO COX PROCESSES nevertheless it is possible to reparametrize this model
in such a way, that we still havk’ a probability
Let us start again with the log Gaussian Coxkernel, but the formulas are more complicated
processes. We said already that their distribution i¢Hellmundet al., 2008. Then we obtain a point
completely determined by the mean value field angbrocess of the location dependent thinning type with
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p(u) O fg(u) and a well defined inhomogeneogs estimate[? of the inhomogeneity parametéd and
function equal to the-function of the homogeneous subsequently with the approximation
model and we can use the estimation procedures from "

the preceding chapter. Jo)s é(u,v) ~ pﬁ.e(u>pé.e(v)

An example of such a point process can be seen u+v
in the middle panel of Fig2. This is a realization of T fﬁ(?)//rzke(w, u) ke (W, v) C (dr, dw) ,
the inhomogeneous Thomas process model from the . - .
preceding chapter witl = (Bo, 1), z(u) = u, and W€ can use the composite or Palm likelihood to obtain
f5 = exp(BiUz). We see clearly how the strength of thethe estimate of the interaction paramefler
clustering disappears in the areas with low intensity Example. Let us consider the inhomogeneous
since the clusters are gradually thinned out even t@homas process witl (dr,dw) = fz(w)ud, (dr)dw,
individual points in the bottom part of the panel. Suchi.e., the mothers are distributed inhomogeneously
a point pattern would corresponelg., to a situation according to the intensity functiofgu. Then by the
when we want to model a biological population of approximation (Eq32) we get
seedlings, produced by a homogeneous population
of older plants, where the seedlings were thinned pp.e(u) ~ fg(u) - const (33)

by different ecological conditions at their respective . B -
location. and by choosingg.g., fg(u) =exp(z(u)B")/M we see

that we obtain the same estimate @flike for the

A completely different point pattern can be seen inog-linear inhomogeneous Thomas process of location
the first panel of Fig2 — here we have the same clustersdependent thinning type from the previous chapter.
(same size of clusters and number of points in thélevertheless for the second order intensity function we
clusters) but their number (=intensity) in different partsget the approximation
of the observation window is different. Keeping to
our plant community example this would correspond p? (u,v) ~ pz(U)Ps (V)
to a situation, where we have homogeneous outer )
ecological conditions but the sources of seedlings fﬁ(%’) exp(—%)
(older plants) are unevenly distributed in space. This 1+ T 102 , (34)
point process was derived from the homogeneous one B(u) B(V> moTH
by setting

thus the obtained estimate &by either the composite
Z'(dr,dw) = fg(w)Z (dr,dw) , (29) or Palm likelihood method will be influenced by the

weighting factor offﬁ(%’)/( fa(u)f5(v)).

] ) o When constructing the inhomogeneous models it is
Concerning the question of parameter estimatiosq possible to include the inhomogeneity functign
of the model (Eq29) by moment methods we can plug intg several ingredients of the shot noise Cox process

and keeping the same kernel

iniinto Egs.11and12 specification, thus obtaining point patterns with more
complicated geometrical structure. Our last example is
p(u) = //rk(w, u) fg(w) {(dr,dw) , (30)  the point pattern in the right hand panel of FigWe
2 can notice a certain resemblance with the right hand
P (uv) = p(u)p(v) (1) panel in Fig.1 — the locally scaled point pattern. Here

2 also the different parts of the figure look like a scaled
k k f
* /r (W, W k(w ) fig(w) ¢ (dr, cw) version of the same clustered point pattern, where the
(ntensity is high, the clusters are more compact and

and see that the separation of the inhomogenei here the intensity is low, they are more loose.

parameters is no longer possible. Nevertheless
can still accept the pragmatic attitude and under This type of inhomogeneous shot noise Cox
the assumption that the scale of change of th@rocess was derived from the homogeneous model by
inhomogeneity function is larger than the size of thedefining the kernek/

clusters {.e., the scale/practical range of the kernel

functionk) we can use the approximation K (w,u) = kg <f \?lw)’ : l(JW)> f(jv)d , (35)
B B

pp.o(u) ~ fp(u) //rkg(w, u)de(dr,dw),  (32)  (note thak is again a probability density i) and the
intensity measuré’ of @ by

to obtain from the estimation (E@5) a (biased, but
under the above mentioned assumption reasonable) Z'(dr, dw) :Zg(dr,dw)/fﬁ(w)d. (36)
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