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ABSTRACT

The main contribution of this paper is introducing a method to distinguish between different landmarks of
the retina: bifurcations and crossings. The methodology may help in differentiating between arteries and
veins and is useful in identifying diseases and other special pathologies, too. The method does not need any
special skills, thus it can be assimilated to an automatic way for pinpointing landmarks; moreover it gives good
responses for very small vessels. A skeletonized representation, taken out from the segmented binary image
(obtained through a preprocessing step), is used to identify pixels with three or more neighbors. Then, the
junction points are classified into bifurcations or crossovers depending on their geometrical and topological
properties such as width, direction and connectivity of the surrounding segments. The proposed approach is
applied to the public-domain DRIVE and STARE datasets and compared with the state-of-the-art methods using
proper validation parameters. The method was successful in identifying the majority of the landmarks; the
average correctly identified bifurcations in both DRIVE and STARE datasets for the recall and precision values
are: 95.4% and 87.1% respectively; also for the crossovers, the recall and precision values are: 87.6% and
90.5% respectively; thus outperforming other studies.
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INTRODUCTION

What drives many researchers to focus on studying
and extracting diverse features in retinal images is
their vital role in understanding, diagnosing, and
predicting not only different pathologies of the eye,
but also estimations of a variety of more general
diseases in the body. Pathologies of the eye make
changes in the properties and structure of the vascular
tree, while diabetic retinopathy usually leads to the
formation of new vessels and branches, hypertension
reduces the caliper of arteries, and vessel occlusion
extends their length (Fathi et al., 2013). Moreover,
the identification of vascular landmarks can help
a lot in pinpointing network connectivity and in
constructing retinal vascular trees with anatomical
reality, which would be used in many applications such
as personal identification, mosaicing, and biometric
security features applications.

For a correct understanding of a vascular tree,
the landmarks (bifurcations and crossings) have to
be identified. These vascular landmarks are milestone
features which can be used in personal authentication
systems, and also in image registration processes to
follow up a patient’s status (Fathi et al., 2013). The
perceptual recognition of the landmarks is much easier
for a physician compared with technical approaches;

this is due to the deep and comprehensive knowledge
she/he has.

Vascular landmarks or junction points in the retina
are divided into two main types:

– branching junctions which divide the vessel into
two sub-vessels;

– crossing junctions, where two separated vessels
overcross each other.

Branching junctions might be additionally divided
into two types: Y-junction or bifurcation junction in
which a vessel splits into two vessels of comparable
measures, and T-junction where a minor (of smaller
width) vessel protrudes from a major vessel.

In our paper we use the terms branching and
bifurcations interchangeably since for the purpose of
the study there is no need to distinguish between them.

The landmarks of the retina, especially the
crossovers, have a huge number of shapes and
structures which makes it difficult to construct a
direct technique to locate them. Spherical shape of
the eye, inconsistent reflectance of light in the vessels,
the existence of pathologies, a big variety of vessel
widths and directions do not let the fundus image be
good enough to obtain the perfect segmentation which
would be used to identify these landmarks.
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In the last decade two main techniques were
designed to pinpoint the vascular landmarks:
geometrical-features based (adopted by this study)
and model based approaches (Azzopardi et al.,
2011). The geometrical-features based technique
depends on image processing manipulation including
segmentation and thinning followed by pixel
processing and junction-point analysis. This is a
robust technique for localizing bifurcations but needs
extensive pixel processing. The model based approach
is more adaptive and needs less computation, but
it suffers from being less generalized since not all
features can be modeled easily (Azzopardi et al.,
2011).

Many of the important features of vessels, such as
width and angles between them, have to be measured
in the process of classifying landmarks; these features
provide other diagnosing parameters which can be
calculated directly, e.g., the arterial/venous width ratio
(AV-Ratio) which in certain cases is an independent
risk factor for stroke, as well as some eye diseases (Xu
et al., 2011). In the classification process, on the
contrary of our method, many techniques do not take
these features into consideration, which may result in
increasing the false positive validation parameter (FP).

RELATED WORK

This field of research involved a number of
academics who worked on retinal segmentation, but
few of them paid enough attention to identifying the
landmarks of the vascular tree of the retina. Al-diri et
al. (2010) presented an algorithm in which a retinal
vessel graph is formed by analyzing the potential
connectivity of segmented retinal vessels. Self-
organizing feature maps have been adopted to model
implicit cost functions for the junction geometry, and
the network connectivity is identified by resolving the
configuration of local sets of segment ends. Another
paper done by Calvo et al. (2011) divided the method
into two successive steps. The former, applies imaging
techniques (filters and morphologic operations) to
obtain the base structure for vessels detection. The
latter, classifies (crossover or bifurcation) by analyzing
the feature point’s environment. Fathi et al. (2013)
suggested also a proper local vessel pattern operator,
applied to the centerline of the already thinned
segmentation. This operator has a circular structure to
extract and classify vessel-point features. Nayebifar et
al. (2013) used an approach based on particle filtering
to specify and track the vessel paths in retina. After
a median filtering stage is applied, the product of the
green and blue channels, in the RGB retinal image, is

used as the probability density function in tracking and
describing blood vessels. Initiating the starting point
set around the optic disc, the propagating test decides
whether a pixel is inside or outside a vessel, and
then clusters the pixels by thresholding. The tracking
proceeds towards a bifurcation or ends of the vessels.

In their paper, Lin et al. (2012) intended to
identify the vascular tree by vessel segmentation
using the Kalman filter depending on the continuities
in curvature, width and intensity changes at the
bifurcation and the crossing points. Tracing errors
are resolved by applying a minimum-cost matching
algorithm at junctions. Their system was trained
on 20 images of the DRIVE dataset, and tested on
the remaining 20 images. Another method given by
Azzopardi et al. (2011) was used to identify the
landmarks by an initial training phase to configure a
bank of Gabor filters; yet, that method did not proceed
to distinguish between bifurcations and crossovers.
Aibinu et al. (2010) used a new hybrid approach called
the combined cross-point number method to detect
the bifurcation and intersection points in the fundus
images using a window of 5×5 pixels.

Dashtbozorg et al. (2014) proposed an automatic
graph-based approach to classify the vessels into
arteries and veins. In order to identify each graph node
as being a bifurcation or a crossing, the following
steps were applied: the centerlines are extracted from
the segmented image, inferring a graph representation
of the centerlines, and different modifications and
enhancements are applied on the junction points in the
graph in order to classify the landmarks.

We already developed methodologies to
automatically segment retinal images by using
AdaBoost (Lupaşcu et al., 2010), self-organizing
maps and K-means (Lupaşcu et al., 2011a), Fuzzy
C-Means clustering (Lupaşcu et al., 2011b). All
these approaches were validated by using the
datasets Digital Retinal Images for Vessel Extraction
(DRIVE) (Staal et al., 2004). The method proposed
here introduces a new technique which uses the
graph representation of the segmented images and
added extra features round the junction points to
achieve better reliable classification performances.
Both DRIVE and STARE were chosen in this work since
they are popular publicly available datasets and a lot
of previous and current works are using them (Aibinu
et al., 2010; Azzopardi et al., 2011; Fathi et al., 2013),
thus more comprehensive comparison between our
method and those of other researchers will be achieved.
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MATERIAL

The 40 DRIVE photographs are randomly selected
ones out of 400 for diabetic subjects aged between
25 and 90 years by using a diabetic retinopathy
screening program in The Netherlands; only 7 out
of 40 show signs of mild early diabetic retinopathy.
Each image was captured using 8 bits per color
plane at 768 by 584 cropped into 565 by 584
pixels saved in a JPG compressed format. The set is
divided into training and test sets, where the first part
contains 20 images with their corresponding manual
binary segmentation, while the latter part (test set)
which contains also 20 images, has 2 independent
manual binary segmentations, the 1st is used as
the ground truth while the 2nd is used in general
for comparative evaluation. Observers that manually
segmented the vasculature were instructed and trained
by experienced ophthalmologists. They were asked to
mark as belonging to vessels those pixels of which they
were at least 70% certain. Detailed information can be
seen later on (Niemeijer et al., 2004).

Regarding the STARE dataset (Hoover et al., 2000),
it also consists of twenty colored retinal images; ten
of them have pathological features. The size of each
image is 700 by 605 pixels, and 8 bits per color channel
and segmentation of these images was done by two
observers (Fraz et al., 2012).

METHODOLOGY

Two main phases are presented in the method of
this study: preprocessing and classification. During the
preprocessing stage, the binary segmented image is
analyzed specifying the segments, junctions, widths,
directions... While during the second stage, each
junction is classified into a bifurcation or a crossover.

PREPROCESSING STAGE
A colored fundus image, with its binary

segmentation, is the starting point for the
preprocessing stage. Thinning of the segmented
images (Lam et al., 1992) was adopted in this
contribution instead of skeletonization (Whan et al.,
1993), owing to the fact that the thinned image presents
smoother segments and contains less spikes which
may give a false impression of branches and cusps.
Different examples are shown in Fig. 1. Thinning
is a binary morphological iterative operation which
preserves the original topological information of
the structures and returns a thin representation of
the centerline of a given vessel by assuming eight-
connectivity configuration (Bhuiyan et al., 2007).

Fig. 1. Sample segmentations (a); skeleton (b);
thinning (c). Main differences are highlighted.

Due to the low resolution of the segmented images,
one or two pixel gaps confuse the thinning operation,
since that will create an edge connecting the two
sides while this edge might not be existing in the
actual segmented image. Therefore, our methodology
enhances the segmentation automatically by applying
a set of three rules, in the following order:

– should two components with less than 200 black
pixels be weakly-connected one to another, then
this connection must be reinforced to become a
strong one by introducing a pixel as belonging to
background (see Fig. 2a – red arrow);

– should a black pixel be weakly connected to a
component with more than 1000 black pixels, then
the former pixel must be labeled as belonging to a
vessel (see Fig. 2a – green arrow);

– all strongly connected components with no more
than two black pixels must be assigned to the
surrounding vessel (see Fig. 2a – blue arrow).

Fig. 2. Original (a) and modified (b) segmentations
with the corresponding thinning representations. The
meaning of the arrow color is described in the text.

A portion of a segmented image (Fig. 2a)
is processed (Fig. 2b) to clarify the effect of
modifications on their corresponding thinning images
Fig. 2 left respectively.

The thinned resulting graph will represent the
vascular network (Lupaşcu et al., 2013a), in which
links and nodes identify vessels and intersection points
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(bifurcations and crossings) respectively; each link is
connected at most to two nodes, while each node is
connected at least to three links. Thus the graph is
composed by two sets: the first set contains the links
and the other one the intersection points, all reserved
in image form. In order to identify all those elements,
a labeling process is applied; as a result, each element
in the image will be identified by a different label.

The essential structures of the thinned form are
defined as follows: a vertex is a pixel in the binary
image connected to at least three components. In
particular, a bifurcation is a vertex connected to exactly
three components while a direct crossing is defined
as a vertex which has four connected components.
When we have two wide segments crossing each
other, usually their thinning is represented by two
vertices with a common edge in addition to four outer
segments (Fig. 3). This type of crossing is called a non-
direct crossing. This last structure makes it difficult to
distinguish between a crossing and two consecutive
bifurcations. It was experimentally verified that 25
pixels are suitable as the maximum allowable edge
length, for considering the structure as a non-direct
crossing. For the sake of simplicity, we will consider
both direct and non-direct crossings just as crossings.

We need now to define and sort two sets of vertices:
those of probable direct crossings and bifurcations;
each of these two sets is used in the classification stage.
As far as we know, those direct crossings, connected
to 4 surrounding segments, are plausible ones and in
need of confirmation, while the non-direct crossings
consist of all pairs of adjacent bifurcations such that
the distance between the pair of vertices is less than 25
pixels.

a b c

Fig. 3. A colored crossing (a), its segmented version
(b) and the centerline (c) with two vertices (red) and
the edge between (yellow).

Extracting the real crossings from the probable
ones is really challenging owing to the complexity
of the vascular structure; variant possible shapes,
tortuosity, in addition to distance between the two
vertices in a non-direct crossing and the number of
segments, had to be taken into consideration while
designing the needed technique for specifying the
segments connected to the crossing.

The proposed technique runs as follows: first,
proposing the minimum rectangle that includes the
vertex/vertices followed by expanding the sides of

the rectangle by one pixel in each direction then
detecting those involved segments in the proposed
crossing. Each segment is labeled with a distinctive
number as can be seen in Fig.4. In this way, we
specify the segments which are directly connected
to this/these vertex/vertices without interference with
other non-intended segments. The segments connected
to the vertices are counted in order to propose
the plausible landmark type and their anticlockwise
ordering round the vertex/vertices is determined and
reserved for further investigation; since the features
of each segment such as caliper, direction, and
connectivity are involved in the criteria for defining the
real crossings.

Counting the number of segments round a vertex is
a different approach with respect to the circular probe
introduced by Calvo et al. (2011), where changed
radius is critical in detecting the neighboring segments
and consequently in the overall performance. In the
example of Fig. 4, bifurcations are represented in blue,
a probable direct crossing is highlighted in red and a
probable non-direct crossing with an edge between its
two successive bifurcations colored in yellow.

Fig. 4. Detecting the landmarks: the segmented image
(a), labeled thinned representation of the vessels (b)
and rectangles including the vertex/vertices (c,d,e) for
direct crossing, bifurcation and a non-direct crossing
respectively.

Measuring Vessel Direction

The vessel direction is one of the most important
segment features on which many methods depend, in
classifying junctions in the vascular tree (Al-diri et al.,
2010; Lin et al., 2010; Fathi et al., 2013; Dashtbozorg
et al., 2014). Segment length and direction can be
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assessed using its thinned form; length is calculated
by counting the number of pixels in the corresponding
centerline, but more effort is needed to measure the
direction. To identify the slope, we used the singular
value decomposition (SVD) algorithm which produces
a diagonal matrix S and unitary matrices U and V such
that X =U×S×V ∗, where S has the same dimension
of the input matrix X with non-negative diagonal
elements in decreasing order, called the singular values
of S. The slope angle of the given segment can be
calculated from the two matrices V ∗ and S as the final
output of a special program named SVD perpendicular
direction (SVDPD).

Since vessels are usually considered smooth with
slight curvature (Fang et al., 2005), the direction of a
vessel round a junction is approximated by measuring
the direction of the nearest portion of the vessel
to the junction. As seen in Fig. 5, the direction of
each segment round the junction point is measured
in the range between 0 and 180 degrees, which does
not immediately determine the angles between the
segments around the junction points or the difference
in direction between the opposite segments.

Fig. 5. To compute the directions, each segment is
measured by considering a portion of the centerline
round a junction and then appropriate values are
added to let the angles range between 0 and 360
degrees.

An additive value is estimated to define the
segment direction round the vertex as defined in the
usual Cartesian plane, with the modified measure of
the angles lying in the range between 0 and 360
degrees; thinning may have a segment with non-linear
pixels so that different quadrants are involved by the
segment, especially for the non-direct crossing where
there are two vertices. The suggested form to define
the additive value uses a Cartesian plane rotated 45
degrees, as shown in Fig. 6, where the yellow region is
a buffering zone. Thus, a modification of the measure
of the direction of each segment is obtained by adding
an additive value depending on the position of the
segment relative to the vertex and the measure of the
direction being less than or greater than 90 degrees. An
illustration of this is given in Fig. 6.

Fig. 6. The additive value θad is defined to modify the
direction of the segment regarding the vertex.

Measuring Vessel Width

Several techniques are presented in the literature to
measure the width of a vessel in the retina (Niemeijer
et al., 2011; Fathi et al., 2013; Lupaşcu et al., 2013b)
each with different level of accuracy, and since an
approximated width is sufficient for the method due
to the used resolution, two essential techniques were
used both of which rely on the following principle: a
perpendicular straight line to the centerline is defined
through a pixel of the centerline to minimize the
error during measurement. The width of the vessels at
each pixel in the segment (Niemeijer et al., 2011) is
measured by finding the number of pixels common to
the segment and the perpendicular line to it including
the pixel of the centerline itself. This process is applied
to each pixel in the centerline round the vertices within
a 9×9 window.

Shortness of length of the thinned segments and the
presence of several connected vessels to the segment,
limit the effectiveness of the calculation process.
Hence, two different techniques are used to extract
segment’s width: for those segments of length with 6
pixels or more, we used the perpendicular line method;
since this will be efficient and reliable in this case.
But, when the length of the segment is less than 6
pixels a rotational technique is employed. These two
techniques are defined below.

The perpendicular line method. The same
method we defined in detecting the direction of the
centerline is used here; the width is measured through
a perpendicular straight line whose direction is defined
at each pixel and not as detecting an overall direction
of the centerline round a vertex by using the segment
as a whole. To do so, a gradient box with the size
of order two by two pixels is used. In Fig. 7a a
perpendicular line extracted from the thinned segment
is superimposed on the segmented image to calculate
the width which is the Euclidean distance between
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the two edge pixels intercepted by the edges of the
segment and the perpendicular line.

The rotational line method. For small segments,
a set of twelve rotated straight lines, each spaced
15 degrees from the next one, are positioned around
the intended centerline pixel; the number of pixels
common to each line together with the centerline pixel
is found and the minimum number of the twelve
cases is taken to be the width of the segment (See
Fig. 7b) (Hatanaka et al., 2011).

Fig. 7. Perpendicular (a) and rotational (b) methods
to compute the width of the vessel. Both approaches
return a measure equal to 3 pixels.

CLASSIFICATION STAGE

In a crossing, at least one segment of each pair
of the two crossing vessels should be connected to
some other vessels. Otherwise, this vessel (pair of
segments) lacks the mechanism of supply of blood that
is characteristic of the vascular tree; this necessitate its
being 2 branches of a main vessel. In order to make the
decision more reliable, a threshold segment length for
such cases was used, such that if at least one of the two
non-connected segments is longer than the threshold,
then this candidate crossing will be checked through
the crossing identification process (Fig. 8).

Fig. 8. The two short non-connected segments show an
apparent crossing, yet they are classified as 2 branches
of a main vessel.

Identification of Direct Crossings

In order to confirm or reject each candidate
crossing defined in the preprocessing stage, we have
to take into account further distinctive features such
as width and direction of the segments; each two
continuing segments generally have nearly equal
widths and directions (see Fig. 9). This assumption

might be violated in case of a disease or a non-precise
segmentation, and moreover the low resolution of the
images obliges a permissible threshold parameters.
Rules about the width and the direction are defined as
follows:

Width restrictions for direct crossings. Suppose
the widths of the first pair of segments of a vessel are
w1,w3 and the second pair has the widths w2,w4 (see
Fig. 9a).

Two width conditions are checked for each two
segments of the same pair: the width ratio (ρ) and the
width difference (δ ). For each pair, we compare their
width percentages, and then the minimum percentage
is chosen, the function 1 gives its mathematical
expression.

ρ = min
{ min{w1,w3}

max{w1,w3}
,

min{w2,w4}
max{w2,w4}

}
. (1)

This ratio should not be less than 0.15 (empirically
determined), otherwise, the widths of the two segments
of a pair are not considered as the same vessel and
hence the assumption of a crossing is not true. The
width difference (δ ) is calculated by the equation:

δ = max{|w1−w3|, |w2−w4|} , (2)

which represents the maximum difference between the
width of the two segments of each pair, the difference
value (empirically determined) was chosen to be less
than 6.2 pixels; otherwise, the two segments are not
considered to belong to the same vessel; hence the
assumption of a crossing is not true.

Direction restrictions for direct crossings. To
identify the direction of each surrounding segment to
a vertex, the centerlines of the segments are used.
All directions are reported lying in the range 0–360
degrees (see Fig. 9), with respect to the vertex taken as
the center of the crossing.

Fig. 9. Direction and width of each segment as θ and w
respectively (a), angles between the segments (b) and
the supplementary angles (c).

Given α1 +α2 ≤ β1 + β2 (Fig. 9b), the following
definitions are adopted:

α1: The smallest angle of the pair α1 and α2

β1: The smallest angle of the pair β1 and β2.
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The following conditions were empirically
determined:

0≤ α1 ≤ α2 ≤ 173◦, 35◦ ≤ β1 ≤ β2 ≤ 180◦.

∆1 and ∆2: The supplementary angles of the difference
in direction between each segment and its continuation
(Fig.9c). The values of ∆1 and ∆2 have positive
measure less than or equal 90◦, so as to avoid allowing
crossings of such high turning vessels.

If the above conditions for direction of segments
in a candidate direct crossing do not hold then the
assumption of a crossing is not true.

If a candidate direct crossing satisfies both
conditions of width and direction then it is regarded as
a real direct crossing. The confirmed direct crossings
are not used any more in further classification
procedures, while still candidate direct crossings have
to be checked again in next identifications.

Identification of non-direct crossings

Not any two successive adjacent bifurcations will
constitute a non-direct crossing; this depends on the
distance between their vertices, and the directions of
the opposite segments in addition to their width.

As in the direct crossings, width and direction
are the main features used to classify the non-direct
crossings in addition to connectivity, but with more
restrictive conditions. The main difference between
the images of the two types of crossings is the non-
actual edge imposed between the two vertices in the
thinned form. The vertices are taken in pairs under the
following condition:

The edge (d) between two connected vertices must
not exceed 25 pixels (Fig. 10); otherwise, they are
considered as two bifurcations. All of the candidate
non-direct crossings are sorted in ascending order
regarding the edge length. Starting from the shortest
edge, each pair is checked if it satisfies the non-direct
crossing criteria depending on width and direction.

Fig. 10. The centerlines of non-direct crossings
defining the angles used and the link of length d
between the vertices.

Width restrictions for non-direct crossings. In the
non-direct crossing, the same two width conditions
used in direct crossing are also checked for the two

corresponding segments: the width ratio (ρ) and the
width difference (δ ).

The ρ ratio is defined as in Eq. 1, it is not to be
less than 0.25. If ρ does not satisfy this condition, the
two segments will not be considered as a continuation
of the same vessel.

In the same way, as in direct crossing, the width
difference δ is calculated through Eq. 2, where δ

should not exceed 3 pixels.

Direction restrictions for non-direct crossings.
To identify the direction of each surrounding segment
to a vertex, approximately the same technique was
used as the one in the direct crossing. The following
definitions are adopted (Fig. 10):

– α1: The smaller angle of the two opposite angles
connected by the segment “d”.

– α2: The greater of the two opposite angles.

– β1 < β2.
The restrictions on these conditions are as follows:
0 ≤ α1 ≤ α2 ≤ 166◦, α1 + α2 ≤ 260◦,
α2−α1≤135◦, β2−β1≤113◦

– ∆1 and ∆2: The difference in direction between the
two segments of each pair in the proposed crossing
vessels, where
88◦ ≤ ∆1 ≤ ∆2 ≤ 267◦

The non-direct crossings candidates satisfying these
conditions are considered non-direct crossings, and
their vertices will not be involved in any further
investigations.

Non-standard crossings
Although crossings with more than four segments

are quite rare in fundus images (Dashtbozorg et
al., 2014), the misclassification, resulting from the
complexity of such crossings, might destroy the retinal
vascular tree reconstruction. Only few researchers tried
to identify this kind of crossing in their work (Saez
et al., 2012; Dashtbozorg et al., 2014). The proposed
approach in this study is limited to the case involving
5 segments constituted of two main vessels crossing
each other and a daughter branch from one of them.

RESULTS

The main performance measures which are used
in evaluating the landmark classification, depend on
the comparison between the description of the found
landmarks and those manually provided by expert and
known as ground truth. The following indices have
been used in evaluating our methods classification
performance:
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– True Positive (T P) indicates the amount of real
feature points detected by the system.

– False Negative (FN) is the amount of real feature
points not detected by the system.

– False Positive (FP) indicates the number spurious
feature points detected by the system

– Recall reflects the ability of the algorithms to
detect the landmarks, RE = T P/(T P+FN)

– Precision is the rate of true positive to all positive
results, PR = T P/(T P+FP)

– Jaccard Index which measures the similarity
between two sets A and B is defined by the
equation: J(A,B) = |A∩B|/|A∪B|.
The Jaccard index was calculated by using the
formula J = T P/(T P+FP+FN).

The suggested unsupervised approach was
validated on the 20 test images of both the DRIVE
and STARE datasets, using their available first manual
segmentation (Fraz et al., 2012) to identify the
structural components of the vascular tree.

The optic disk, which can be located by using
the Harris detector (Bellavia et al., 2011; Dehghani
et al., 2012), was excluded from the evaluation of the
method due to the complexity, and multi intertwining
of its vessels (Dashtbozorg et al., 2014). This area
usually contains many vessels and the corresponding
graph is not reliable; detection percentages for both
bifurcations and crossings are shown in Table 1.

Table 1. The detection percentages of bifurcations and
crossings for DRIVE and STARE datasets.

DRIVE T P % FN % FP %

Bifurcations 94.3 5.7 17.7

Crossings 86.5 13.5 13.1

STARE T P % FN % FP %

Bifurcations 95.3 4.7 13.0

Crossings 86.8 13.2 7.6

Moreover, the method took into consideration
all vessels, without excluding the smallest ones.
The proposed methodology asserts its being more
robust and powerful than most of the other
methodologies (Bhuiyan et al., 2007; Al-diri et al.,
2010; Aibinu et al., 2010; Fathi et al., 2013), which is
confirmed by the results.

The method works properly with different datasets
resolutions (Table 2); the recall and precision

values for both the DRIVE and STARE datasets
show comparable results for their mean, standard
deviation, minimum, and maximum values. This gives
a certification of robustness to the methodology.

Table 2. Performance for classification of bifurcations
and crossings in DRIVE (DR) and STARE (ST).

Bifurcations % Crossings %

RE PR RE PR

mean DR 94.9 84.5 86.8 87.6

ST 95.9 89.6 88.4 93.3

std DR 3.4 5.1 6.8 7.7

ST 3.3 7.4 8.0 7.0

min DR 86.8 71.8 76.0 75.9

ST 89.2 77.4 71.4 79.0

max DR 100. 93.8 96.2 100.

ST 100. 100. 100. 100.

Since the recall and precision values do not show
the influence of FN and FP on the performance
of the method simultaneously, a Jaccard index was
introduced and the results are shown in Table 3 where
the effect of FP values reduced the performance in
comparison to recall and precision values.

Table 3. Detection performances percentages of
bifurcations and crossings of different studies on the
DRIVE and STARE. Best results are highlighted.

Bifurcations % Crossings %

DRIVE RE PR CO J RE PR CO J

Al-Diri et al. 71. - - - 48. 69. 58.5 -

Aibinu et al. 94.8 51.9 73.3 - 4.6 85.3 44.9 -

Fathi et al. 80.8 88.4 84.6 - 85.9 78.9 82.4 -

Our method 94.9 84.5 89.7 80.2 86.8 87.6 87.2 76.5

Bifurcations % Crossings %

STARE RE PR CO J RE PR CO J

Aibinu et al. 97.2 52.8 75. - 6.1 87.5 46.8 -

Fathi et al. 88.2 83.8 86. - 82.9 85.8 84.3 -

Our method 95.9 89.6 92.7 84.3 88.4 93.3 90.8 80.7

On the other hand, our methodology is stable in
classifying the landmark points, with respect to both
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precision and recall: the plots in Fig. 11 show that most
classifications exibit a value of at least 80% for PR and
RE measurements.

In order to compare and to evaluate the
performance of our methodology, a manual detection
of landmark points was carried out by an expert
ophthalmologist on 20 test images for both the
datasets, where he identified the locations and types
of the junction points as bifurcations or crossings.

In particular, the DRIVE test images were manually
identified to have 2167 bifurcations and 520 crossings,
while the algorithm located 2427 bifurcations, 192
direct crossings and 326 non-direct crossings (a total
number of 518 crossings). Regarding the STARE
dataset, it was also manually identified to have 1146
bifurcations and 370 crossings, while the algorithm
located 1241 bifurcations, 97 direct crossings and 252
non-direct crossings (a total number of 349 crossings).
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Fig. 11. Precision vs recall for the DRIVE (blue)
and STARE (red) datasets classified into bifurcations
(triangles) and crossings (circles).

We observed a difference in the classification
ability among different images regarding existing
pathologies and the quality of their respective
segmentations. In classifying particular junction
points, difficulties may arise due mainly to low
resolution segmentation (Al-diri et al., 2010). For
instance, here are some of these complications:

– Two segments may pass very near to each other
but do not really cross, (Figs. 12a, b) which may
lead to a higher number of detected bifurcation

points by our methodology compared with those
classified by the physician;

– Two segments may intertwine more than once
(Figs. 12c, d) which is not easy to analyze in the
thinned form;

– Wrongly identified bifurcations or crossings due
to non-verified segments in the binary image
(Figs. 12e, f);

– Non usual vessel structure (Figs. 12g, h).

– Crossings not correctly identified are considered
as bifurcations (Lin et al., 2010), this leads
to a reduced number of automatically detected
crossings with respect to those manually identified
ones and to more bifurcations.

a b

c d

e f

g h

Fig. 12. Some encountered problems: too close vessels
(a, b); intertwining vessels (c, d); a non-existing vessel
is present in the binary image (e, f); non-usual vessel
structure (g, h).
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a

b

c

d

Fig. 13. Best (a, c) and worst (b, d) classified landmarks (bifurcations: triangles, crossings: circles and ellipsis)
superimposed on the colored and corresponding segmentation. STARE (a, b) and DRIVE (c, d) images.
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The explanation of extra identified false
bifurcations with respect to crossings, as shown in
Table 1, might be a result of high detection ability even
for very small segments, i.e., protrusions, and also
to non-sufficient separation between near segments;
again, low resolution in the segmented image limits
the ability to have a proper separation for such near
segments (Figs. 12a, b). Moreover, the non identified
crossings are regarded as bifurcations. The difference
between the best and the worst results are evident in
Fig. 13.

Comparing the recall and precision for both
bifurcations and crossings in Table 2, we notice
that, bifurcations recall is higher than precision. In
the crossing case, precision is generally higher than
recall, which indicates that the algorithm detects real
crossings in case of standard ones but it is liable to get
confused in case of nonstandard crossings.

To the best of our knowledge, the method excels
the present mentioned results in literature for detecting
landmarks of the retina on the used datasets in this
study. To evaluate the performance of our methodology
regarding other works, a comparison is presented
in Table 3 between 3 previous studies and ours.
Where correctness (CO) was defined as the average
of the recall and the precision values. The recall
and the precision rates in some previous works, are
evaluated with big differences, such as the results
in Aibinu et al. and the crossings correctness value
did not exceed 58.5% in Al-Diri et al. on the
DRIVE dataset. However, comparing the previous two
results to Fathi et al. his work got more reasonable
performance measurements for both datasets. Our
method shows approximately 6% improvement in
overall performance in comparison to the best results
which were presented by Fathi et al. (2013).

DISCUSSION

We introduced here a novel non-supervised
method to detect landmark points in binary images
coming from retinal photographs. These segmented
images can be obtained by using a variety of
approaches already present in the literature and
validated on both DRIVE and STARE datasets which
are considered as a standard corpus to make fair
comparisons (Niemeijer et al., 2004). The twenty
training images of the DRIVE dataset were used to
fine-tune and modify the performance of our method
before applying the algorithm to the two testing set
images. The methodology on which we built our
work was mathematical modeling of the way the
physician understands and analyzes the segmented

image. It must be stressed that both segmentation and
classification of the landmark points in the ground
truth are subjective and prone to errors.

Our approach showed a high performance in
locating and classifying most junction points. The
final results of the study were compared with state-of-
the-art works, showing generally better overall recall
and precision of the study in both bifurcations and
crossings. The average recall value for bifurcations and
crossings detection in the DRIVE and STARE datasets is
91.5%, and the average precision value is 88.8%.

In the case of ambiguous junctions, our approach
tried to introduce the best expected solution of
that particular configuration. Moreover, further
investigation is needed due to the presence of eventual
pathologies, the low resolution of the images we used
and the subjective segmentations provided by the
physicians, which added an extra burden to the work.

Building on the study an efficient algorithm may
be developed for classifying the vasculature of the
retina into arteries and veins which is important in
identifying diseases; the approach adapted in this paper
can also be used in several practical applications such
as personal authentication, registration, etc.
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