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ABSTRACT

This paper introduces a parameter estimation method for a general class of statistical models. The method
exclusively relies on the possibility to conduct simulations for the construction of interpolation-based meta-
models of informative empirical characteristics and some subjectively chosen correlation structure of the
underlying spatial random process. In the absence of likelihood functions for such statistical models, which
is often the case in stochastic geometric modelling, the idea is to follow a quasi-likelihood (QL) approach to
construct an optimal estimating function surrogate based on a set of interpolated summary statistics. Solving
these estimating equations one can account for both the random errors due to simulations and the uncertainty
about the meta-models. Thus, putting the QL approach to parameter estimation into a stochastic simulation
setting the proposed method essentially consists of finding roots to a sequence of approximating quasi-
score functions. As a simple demonstrating example, the proposed method is applied to a special parameter
estimation problem of a planar Boolean model with discs. Here, the quasi-score function has a half-analytical,
numerically tractable representation and allows for the comparison of the model parameter estimates found by
the simulation-based method and obtained from solving the exact quasi-score equations.

Keywords: kriging meta-modelling, parameter estimation, quasi-likelihood, simulation-based optimization.

INTRODUCTION

Our initial aim motivating this research is fitting
parameters of statistical models from stochastic
geometry for modelling porous media. In many of
these models no closed forms or direct computation
algorithms for likelihood functions or distribution
characteristics as function of the model parameters
are known. This precludes many standard techniques
of parameter estimation, such as maximum likelihood
(ML), typical Bayesian algorithms (including Markov-
chain-Monte-Carlo-type algorithms), or, least squares
(including method of moments) based on exact
model characteristics. It is, however, relatively
easy – though still computationally demanding
and afflicted with substantial random error – to
approximately compute expected values of empirical
characteristics through Monte Carlo simulations by
doing a random simulation of the process and
computing characteristics from the simulation result.
Such empirical characteristics can be any type of
descriptive statistic, for instance, for a random closed
set, the densities of the Minkowski functionals like
volume fraction or specific surface, the covariance and
certain contact distribution functions (Schneider and
Weil, 2008; Ohser and Schladitz, 2009; Chiu et al.,
2013), or, for a random point pattern, the intensity

(function), the pair correlation function and the nearest
neighbour distance distribution function (Møller and
Waagepetersen, 2003; Illian et al., 2008), or any other
sort of summary statistic maybe tailored specifically
for the given estimation problem. In particular, this
includes those cases where a spatial random structure
is practically observable only via planar sections
or projections and, hence, only statistics based on
sections or projections are available.

If we could compute these characteristics
precisely and fast enough, a general approach for
estimation would be to find those model parameters
producing characteristics most similar to the observed
characteristics, following a least squares, minimum
contrast or estimation equation approach. We would
formulate the problem as a minimization problem and
solve it using a standard optimization code. This is
exactly the way how model parameters are commonly
estimated in such a situation (see, e.g., Redenbach,
2009).

However, on the one hand optimization codes
expect their objective functions to be evaluated
precisely. On the other hand, both the Monte
Carlo simulations of the model as well as the
computation of the empirical characteristics are often
very time-consuming. In particular, this applies for
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stochastic geometric models of complex random
structures such as fiber systems (Altendorf and Jeulin,
2011; Gaiselmann et al., 2013) or foam structures
(Lautensack, 2008; Redenbach, 2009).

That leaves us with the task of solving a global
non-convex optimization or adjustment problem where
the objective function can be evaluated only slowly
and with a substantial random error. The aim of this
paper is to give a fast algorithm for solving this
sort of problems. Although it is in principle possible
to apply the ideas of this algorithm also to a least
squares approach, we will concentrate on a certain
estimation equation approach coming from the quasi-
likelihood (QL) theory (Godambe and Heyde, 1987;
Heyde, 1997) which proposes to use the root of the so-
called quasi-score function as the parameter estimate.

The paper is organized as follows. At first, the
necessary ideas from the QL theory are introduced.
Then, in a step-by-step manner, a detailed description
of our ideas to solve the problem of finding a root of
the quasi-score function in practice is given. Then, for
the purpose of comparison, we apply our method to the
example of a planar Boolean model with discs where
also other ways of parameter estimation are available.
Finally, we end up with some discussion.

QUASI-LIKELIHOOD METHOD

Let X be a random variable on the sample
space X whose distribution depends on an unknown
parameter θ taking values in an open subset Θ of
the q-dimensional Euclidean space Rq. The possible
probability measures {Pθ} for X form a parametric
family indexed by θ . We define a mapping Y =
T (X) ∈ Rp denoting a transformation of X to a set
of possible summary statistics. The objective is the
optimal estimation of the parameter θ in the sense of
(asymptotic) minimum variance unbiased estimation
based on the specification of the first two moments
of Y = T (X) without imposing any distributional
assumptions in the situation when likelihood functions
are unavailable. Let Z(θ) = Eθ [Y ] ∈ Rp be a function
of the parameter to the expected value of the summary
statistics and denote the variance of Y as a function
V (θ) = Varθ (Y ) ∈ Rp×p of the parameter under Pθ .
An unbiased estimating function for θ is defined as
a function of the data Y = y and the parameter of
interest, such that Eθ [G(θ ,Y )] = 0 for each Pθ . For
the class G = {A(θ)(y−Z(θ))} of all linear unbiased
estimating functions, where A(θ) is any non-singular
matrix, G(θ ,y) = y− Z(θ) is an optimal estimating

function for which the “information criterion”

E (G) =

(
Eθ

[
∂G
∂θ

])t (
Eθ

[
GGt])−1

(
Eθ

[
∂G
∂θ

])
(1)

is maximized in the partial order of non-negative
definite matrices (Heyde, 1997). Then the QL theory
states that

Q(θ ,y) = (Z′(θ))tV (θ)−1(y−Z(θ)) , (2)

where Z′ is the Jacobian of Z. Q is called the quasi-
score function, which is an optimal estimating function
among all functions of G . The “information criterion”
(Eq. 1) can be seen as a generalization of the well-
known Fisher information and coincides with it in
case a likelihood is available and G is the usual score
function, i.e.,. the derivative of the log-likelihood w.r.t.
the parameter. Thus, in analogy to ML estimation,
E (G)−1 has a direct interpretation as the asymptotic
variance of the estimator θ̂ . Moreover, E (G) might
serve as a measure of how much the characteristics
Y = T (X) contribute to the precision of the estimator
derived from the quasi-score function. Under rather
minor regularity conditions, the estimator θ̂ obtained
from solving the estimating equation Q(θ̂ ,y) = 0 has
minimum asymptotic variance among all functions
G ∈ G whereas consistency is mainly established
due to the unbiasedness assumption of the estimating
equation (Liang and Zeger, 1995) which yields, in
terms of its root, a consistent estimator θ̂ even if
the covariance structure V (θ) is incorrectly specified.
Note that this is in general not the case if we applied
weighted least squares with θ dependent weighting to
our setting.

In what follows we always assume that the family
of models {Pθ} is rich enough to find a root of the
quasi-score equation. This could fail like for instance
in classical ML when the observed characteristics are
outside the range of the expected model characteristics
or if the mapping from the parameter space to the
expected characteristics is not continuous.

It is worth noting that quasi-likelihood is a
concept differing from pseudo-likelihood, which
assumes the existence of a likelihood and estimates
parameters by maximizing an approximation of the full
likelihood rather than the full likelihood itself, e.g.,
because the latter is difficult to evaluate in case of
complex dependencies. The most important variants
are composite marginal likelihoods (see Varin (2008)
for a comprehensive overview) first of all pairwise
likelihoods, which have been used, e.g., for parameter
estimation in random set models (Nott and Rydén,
1999; Wilson and Nott, 2001).
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QUASI-LIKELIHOOD-BASED
ESTIMATION APPROACH

SIMULATION AND INTERPOLATION OF
THE QUASI-SCORE
Since closed form expressions of expectations are

generally unavailable for complex stochastic models
we assume there is no other way of infering Z(θ) or
V (θ) than over extensive simulations of X . We assume
that we can simulate realizations from the distributions
Pθ for any θ ∈ Θ. An iterative algorithm solving the
estimating equations based on the quasi-score function
has thus to conduct simulations of X for various θ

infering Z(θ) and V (θ) from the simulation output.
Depending on the complexity of the simulation models
this can be very time consuming and typical solvers
will be confused by the remaining random fluctuation.
We solve the problem by estimating an approximating
model for the dependency of the quasi-score function
on the parameters from individual simulations and
then solve the quasi-score equation on an iteratively
improved version of this approximation.

We propose the use of an interpolation-based meta-
model of Z(θ) and later V (θ) for the construction of
an approximating quasi-score function, since unlike
the quasi-score function itself, these can be estimated
unbiasedly from simulations. We use kriging (Cressie,
1993; Chiles and Delfiner, 1999) for this interpolation
since it allows automatic adaption of the prediction
rule to the properties of the unknown function to be
interpolated and provides an indication of precision
of the interpolation. Kriging is typically defined in
a probabilistic context but it can also be understood
as a method to approximate or interpolate data such
as splines do (Wahba, 1990). It is primarily based
on estimated covariance functions which quantify the
change rates of the interpolated functions and their
derivatives.

Besides its usage in truly geostatistical problems,
kriging has been also widely applied in the
context of simulation optimization (Kleijnen and
van Beers, 2009) and independently studied within
the optimization literature of Design and Analysis
of Computer Experiments (DACE) (Sacks et al.,
1989) for expensive to evaluate, scalar valued
objective functions. Unlike these approaches which
use stationary random functions we propose the use
of intrinsic random functions because quasi-scores
typically diverge.

Prediction model
Let Z(θ) denote one of the functions to

be interpolated, e.g., Z(θ) = Eθ [Y ]. The problem

considered now is the prediction of the value Z(θ0) for
some new sampling point θ0 in the parameter space
given a finite set Sn = {(θi,zi),θi ∈ Rq, i = 1, . . . ,n}
of pairs of a sampling point θi and an “observed”
zi≈ Z(θi). The observations zi = Z(θi)+εi are affected
by the variance from the Monte Carlo simulations εi.
The εi are assumed to be stochastically independent of
each other. Its variance is estimated in the sampling
procedure. In our setting, given Sn, we model the
functional dependence between the parameter θ and
the value Z(θ) by

Z(θ) = mβ (θ)+W (θ) , (3)

where mβ (θ) = ∑
r
l=0 βl f l(θ) denotes a linear model

for the expected value of the “random” function Z.
The functions f l are known basis functions, typically
monomials for a polynomial approximation of the
mean of Z. The index l has the meaning of a power,
e.g., in 1D, f l(θ) = θ l . The case l = 0 is included for
the constant mean, i.e., f 0 = 1. In the q-dimensional
space there are kn =

(q+k
k

)
monomials of degree ≤ k

so that the term mβ consists of kn + 1 functions f l .
The unknown coefficients βl have to be estimated from
the data. W is a zero-mean intrinsic random function
(see next section). Though the form of W is in general
unknown the covariance structure of W is subjectively
chosen so that it relates to the data phenomenon and its
smoothness properties as usually done in geostatistics.

Intrinsic kriging
Intrinsic Kriging extends the scope of Kriging

to the case of intrinsic random functions (IRF)
(Matheron, 1973) with unknown mean whose
increments are second-order stationary. The main
idea is to filter out the mean so to consider a zero-
mean process again. Here, we shortly recall the basic
notion of IRF. For a set of weights λi ∈ R and points
θi ∈ Θ ⊂ Rq, i = 1, ...,n, we define a discrete measure
λ , say λ = ∑

n
i=1 λiδθi . Let F be the finite-dimensional

vector space generated by f l . For a function f ∈ F
we define the linear application of λ on the function
f by f (λ ) = ∑

n
i=1 λi f (θi). For k ≥ 0, Λk denotes the

set of all measures λ for which f (λ ) = 0, that is, λ

annihilates separately all monomials of degree ≤ k,
i.e., f l(θ) = θ

l1
1 · · ·θ

lq
q , θ ∈ Θ, with the vector-valued

index l = (l1, . . . , lq), l j = 0,1, ...,k and |l|= ∑
q
j=1 l j ≤

k. Such measure λ ∈ Λk is called an allowable
measure, see, e.g., Chiles and Delfiner (1999). For any
translation vector h∈Rq and λ , we define the translate
of λ by τhλ =∑

n
i=1 λiδθi+h with the same weights as λ .

A second-order random function Z(θ) is said to be an
intrinsic random function of order k (IRF-k), if for any
allowable measure λ ∈Λk the random function Z(τhλ )
is second-order stationary. Since the mean of Z(θ) is
in F , Z(λ ), λ ∈ Λk, is a zero-mean random function
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with covariance Cov
(
Z(τh1λ ),Z(τh2λ )

)
as a function

of h1− h2 only. From Matheron (1973) we know that
any continuous IRF-k has a continuous generalized
covariance function K(h) such that for any pair of
measures λ = ∑

n1
i=1 λiδθi ∈ Λk, µ = ∑

n2
j=1 µ jδθ∗j

∈ Λk

and sequences of points θ = (θi), θ ∗ = (θ ∗j ),

Cov(Z(λ ),Z(µ)) =
n1

∑
i=1

n2

∑
j=1

λiµ jK(θi−θ
∗
j ) ,

where K is unique up to an even polynomial of degree
2k for k ≥ 0. For further details the reader is referred
to the general geostatistical literature (Cressie, 1993;
Chiles and Delfiner, 1999; Wackernagel, 2003). In our
examples we use the generalized covariance functions
proposed by Mardia (1996). We need this advanced
covariance functions to adequately describe the typical
divergence properties of the moments as functions of
parameters.

Kriging the statistics
Let the sample mean at some evaluation location θ

be

Ȳ (θ) =
1
N

N

∑
j=1

Y (θ , j) ,

where Y (θ , j) ∈ R denotes the jth simulation, j =
1, . . . ,N, of some real-valued characteristic. The value
Ȳ is regarded as a realization of an IRF-k of known
order k and known generalized covariance function
K(h). We are concerned with the estimation of the
value Ȳ (θ0) for some evaluation location θ0. The
kriging predictor (best linear unbiased estimator) is
given by

Ŷ (θ0) =
n

∑
i=1

λ̂i(θ0)Ȳ (θi) , (4)

where the weights λ̂i, depending on the prediction
location, are the solutions to the so-called intrinsic
kriging equations (Chiles and Delfiner, 1999,
sect. 4.6.). The prediction variance of this estimator
is then given by

σ̂
2(θ0) = K(0)−

n

∑
i=1

λ̂iK(θ0−θi)−
k

∑
|l|=0

µlθ
l
0 , (5)

where µ is the vector of Lagrange multipliers,
introduced in order to ensure the unbiasedness of the
kriging predictor.

Modelling the variance of statistics
The quasi-score function (Eq. 2) involves the

variance-covariance matrix V (θ) of the data Y = y
which in general depends on the unknown parameter.

Since we only assume that we can infer V (θ) from
simulations the idea is to construct an interpolated
version of the sample variance-covariance matrix
based on a Cholesky decomposition.

Let the sample covariance matrix be V̄ (θ) = [v]lk,
where, for l,k = 1, . . . , p,

vlk =
1

N−1

N

∑
j=1

[Yl(θ , j)− Ȳl(θ)] [Yk(θ , j)− Ȳk(θ)] .

The Cholesky decomposition of V̄ is of the form V̄ =
LLt where L is a unique lower triangular matrix with
real and positive diagonal entries since V̄ is (assumed
to be) positive definite. Suppose we have previously
computed a series of such matrices V̄ (θ1), . . . ,V̄ (θn)
for various sample points. In order to apply kriging
we rewrite each Cholesky decomposition V̄ (θk) =

L(k)(L(k))t as a row vector which allows us to treat the
entries L(k)

i j , 1 ≤ j ≤ i ≤ p, k = 1, . . . ,n, as the data to
essentially the same type of kriging model as noted in
(3). We define the following data matrixL(1)

11 L(1)
21 · · · L(1)

pp
...

...
...

L(n)
11 L(n)

21 · · · L(n)
pp

 ∈ Rn×m , (6)

where m = p(p+ 1)/2. Now, each column represents
the kriging data for a single kriging interpolation
model which amounts in overall m kriging models. For
some θ0 the kriging prediction for each model results
in the kriging estimates L̂(0) = (L̂(0)

11 , . . . , L̂
(0)
pp )

t . Finally,
as a unique kriging approximation to V̄ (θ0), we obtain

V̂ (θ0) = L̂(0)(L̂(0))t . (7)

As done before in the case of kriging the statistics,
one could also incorporate a measurement error of
the sample variances. However, as this quantity as a
fourth order moment is difficult to estimate, we use a
global nugget effect in the covariance function model
to capture it.

Modeling the covariance
We use the restricted maximum likelihood method

(REML) (Mardia and Marshall, 1984; Zimmermann,
1989) to estimate the vector φ ∈ Rr of covariance
parameters. The variable under study is still Z(θ)
which is treated as non-stationary in its mean
E[Z(θ)] = mβ (θ) and has a generalized covariance
model K(·;φ). Clearly the response Ȳ (θ) cannot
be observed without noise. The variance of the
measurement noise ε(θ), which is assumed Gaussian
with zero mean, is estimated by

σ̂
2
ε (θ) =

1
N(N−1)

N

∑
j=1

(Y (θ , j)− Ȳ (θ))2 .
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In the application of kriging in geostatistics the
variance of the measurement error is due to the so-
called “nugget effect”. To account for the noise due
to simulation replications we take

Σ̂ε(θ) = Diag{σ̂2
ε (θ1), . . . , σ̂

2
ε (θn)}

as the diagonal matrix of estimated variances. Then the
REML estimation is based on the overall covariance
matrix

K̃(·;φ) = K(·;φ)+ Σ̂ε(·) , (8)

which yields an estimate φ̂ of the covariance
parameter. The kriging estimator and its prediction
variance are further derived from Eq. 4 and Eq. 5
with K replaced by K̃(·; φ̂). Other approaches would be
possible, but we found this approach to be reasonable
stable and effective.

Quasi-score approximation
We are now in the position to construct the

approximated quasi-score based on the interpolated
quantities which we derived in the previous sections.

Suppose that for a given set Sn of sampled points
and corresponding values we have constructed the
kriging predictors Ẑ = (Ŷ1, . . . ,Ŷp)

t for each statistic
together with the approximating variance-covariance
matrix V̂ . Note that all predictors depend on the given
sampled data set Sn. Let

Σ̂K(θ) = Diag{σ̂2
1 (θ), . . . , σ̂

2
p(θ)} (9)

denote the diagonal matrix of kriging variances (Eq. 5)
for each statistic. Based on the optimal estimating
function (Eq. 2) we construct the approximated quasi-
score function Q̂(θ ,y) ∈ Rq by replacing the involved
expectations and variances with the corresponding
kriging approximations

Q̂(θ ,y) =
(
Ẑ′(θ)

)t (V̂ (θ)+ Σ̂K
)−1 (

y− Ẑ(θ)
)
, (10)

such that the approximated “information criterion”
becomes

Î(θ) =
(
Ẑ′(θ)

)t (V̂ (θ)+ Σ̂K
)−1 (

Ẑ′(θ)
)
. (11)

The term Σ̂K explicitly accounts for the kriging
prediction error of the variances of the statistics. This
modification of the variances leads to a systematic
reduction of the prediction error induced by the kriging
model when new solutions are added to the set Sn of all
previously sampled points and values. For a consistent
estimation recall that we do not need to correctly
specify the (unknown) covariance structure V .

The Jacobian of Ẑ, i.e., the matrix of partial
derivatives in Eq. 10, is numerically calculated
based on finite differences of the kriging-interpolated
statistics though one could also obtain estimates of
Ẑ′(θ) by a cokriging approach (Chiles and Delfiner,
1999, sect. 5.5.1).

SOLVING THE QUASI-SCORE
EQUATION

In analogy to the ML method one can regard
the quasi-score function as some kind of a gradient
specification of a “quantity” similar to a likelihood
which, however, is not considered in the QL theory.
Likewise the “information criterion” (Eq. 1) is a
generalization of the well-known Fisher information
defined in the ML theory. Therefore, the same Newton-
Raphson-type iteration used to find the maximum
likelihood estimate as a root of the score function,
which is usually called Fisher scoring, can be applied
to the QL setting (Osborne, 1992). This leads to the
Fisher quasi-scoring iteration

θk+1 = θk + tkdk, dk =−Î(θk)
−1Q̂(θk) . (12)

The step length parameter tk in Eq. 12 has to be
chosen so that the iteration does not become unstable.
Therefore tk is chosen as a minimizer of the auxiliary
optimization problem

min
t∈(0,1]

‖Q̂(θk + tdk)‖2
2 , (13)

(see Osborne, 1992, sect. 4 for details). Particularly
Osborne (1992) shows that the quasi-scoring iteration
converges a. s. to the QL estimator provided that the
effective sample size is large enough and the chosen
starting point θ0 is sufficiently close to a root of Eq. 10.
The aspect of the necessary proximity of the starting
point is dealt with by a simple restart. If the iteration
fails a direct search method (Spall, 2003) is used to find
a better starting value. This is possible since the kriging
interpolations are relatively cheap to evaluate. The
increasing sample size corresponds to an increasing
window size in a spatial setting. Hence, ergodicity or
mixing properties are required. Note that the iteration
is based on the approximated quasi-score function
(Eq. 10) and therefore will find a root of Eq. 10 rather
than of the theoretical quasi-score function (Eq. 2).

UPDATING THE QUASI-SCORE
INTERPOLATION

Since the overall aim is to sequentially improve
the QL estimate based on Eq. 10 towards the solution
of Eq. 2, the approximate quasi-score is updated
as follows: To the current set Sn of all previous
sample points and values the root θ̂ of the quasi-
score equation (Eq. 10) as well as further points
sampled from N (θ̂ , Î(θ̂)−1) are added. This involves
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new simulations at all new locations followed by
refining the approximation Q̂ through an update
of the kriging-interpolated statistics and variance-
covariance matrix (Eq. 7) along the lines of the
previous subsections. The additional locations are
used to improve not only the estimate of the value
but also the estimate of the Jacobian Ẑ′(θ) and,
hence, also that of the quasi-score function. The
chosen sampling distribution for the additional sample
points is motivated by the idea that the estimation
error is (under certain conditions ensuring asymptotic
normality of the statistics T , like ergodicity and
sufficient regularity) asymptotically normal with this
variance (see the subsequent subsection) and thus the
true parameter value could be any of these (Godambe
and Heyde, 1987, sect. 4.3).

ESTIMATION ERROR
The precision of the QL estimator is under certain

conditions asymptotically equivalent to the inverse of
the “information criterion” (Eq. 1). The variance of the
quasi-score function Q(θ ,y) is given by Eq. 1 (Heyde,
1997) and reads

I(θ) = Z′(θ)tV (θ)−1Z′(θ) , (14)

which we call the quasi-information matrix. We can
use a first-order Taylor approximation of Q(θ̂ ,y) in
θ̂ = θ and y = Z(θ),

Q(θ̂ ,y) ≈ Q(θ ,Z(θ))+
∂

∂θ
Q(θ ,Z(θ))(θ̂ −θ)

+Z′(θ)tV (θ)−1(y−Z(θ))

= 0− I(θ)(θ̂ −θ)+Q(θ ,y) ,

which leads to

θ̂ ≈ θ + I(θ)−1Q(θ ,y) .

Using the law of error propagation we finally get

Var(θ̂)≈ I(θ)−1I(θ)I(θ)−1 = I(θ)−1 (15)

for sufficiently large datasets such that y is near E[Y ]
just like in ML estimation.

STOPPING CRITERIA
The estimation algorithm has a twofold iteration.

The inner loop searches for a root of the approximated
quasi-score by means of the stabilized Fisher quasi-
scoring iteration. This inner iteration terminates when
the “Mahalanobis distance” of the quasi-score (Heyde,
1997, sect. 4.4) is numerically negligible, i.e.,

C = QtI−1Q≤ δ � 1 , (16)

e.g., δ = 10−7 in our simulation study. If the algorithm
converges numerically (i.e., the step size in θ drops
below some limit which is small relative to the extent
of the parameter space, in our simulation study set to
10−6) we distinguish two cases. If C is significantly
distinguishable from 0 according to its approximate
χ2

q distribution, the Fisher quasi-scoring iteration is
restarted from multiple (e.g., Eq. 15 in our simulation
study) random locations in the parameter space
following the reasoning that this is not an approximate
root. The root with the smallest sum of eigenvalues
of the inverse quasi-information matrix (Eq. 14) is
selected according to the idea that if really multiple
substantially different parameters occur which would
explain the data we should select one with a small local
estimation error. Obviously this idea can be improved
towards some more sophisticated method to select the
best root according to additional evidence in the data,
e.g., based on a difference quotient quasi-score

(
Z j(θ2)−Z j(θ1)

θ2i−θ1i

)
i j

(
V (θ2)+V (θ1)

2

)−1

(Y −Z(θ)) ,

for evaluation locations θ1,θ2 ∈Θ. If it could be a root
statistically according to Eq. 16, the inner iteration is
interrupted to improve the approximated quasi-score
locally by new simulations in this area of the parameter
space.

The stopping rule for the outer iteration,
which samples further locations, is based on the
comparison of the interpolation error of the quasi-
score approximation to the quasi-information matrix
(Eq. 14). This interpolation error is measured by
the kriging error of Z(θ) and transformed into
an error of the quasi-score by the law of error
propagation assuming Z′(θ)V (θ)−1 and the expected
statistical error of the quasi-score to be known. The
approximation error of the quasi-score is calculated by

B(θ) = Z′(θ)V (θ)−1
Σ̂KV (θ)−1Z′(θ)t .

The outer iteration is stopped as soon as the first is
negligible compared to the second in all directions,
i.e., if the largest generalized eigenvalue (Golub and
Loan, 1996) of the two matrices drops below some
limit b� 1 (e.g., b = 10−4 in our simulation study),
B≤L b ·I(θ), in the Loewner half order of non-negative
definite matrices.
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SUMMARY OF QUASI-SCORE
ESTIMATION

This section is intended to give a short outline of
the intermediate steps during the overall estimation
procedure based on the approximated quasi-score.

The parameter estimation method requires the
definition of a stochastic simulation model which – to
some extent – describes the data-generating process.
For such model, we assume that a fixed set of chosen
statistics can be efficiently simulated for various values
of the model parameters. For the initialization of the
method one has to select a start sample of parameter
values Sn0 of sufficiently large size n0 where to
simulate the model and to compute the values of
these statistics needed to construct the initial kriging
interpolation models. It is not important to select Sn0
according to a specific design methodology as long
as it “reasonably” covers the parameter space such as
space filling designs do, e.g., a Latin hypercube design
(Santner et al., 2003, sect. 5). One could also account
for some “user” knowledge of most likely regions of
possible roots of the approximated quasi-score and
generate a sample of initial model parameters from a
pre-specified a-priori distribution.

The construction and calculation of the
approximate quasi-score involves the following steps:
Suppose that in the kth iteration of the algorithm
a root θ̂k of Eq. 10 was found. Given a set of
sampling locations Snk together with the corresponding
simulation results the mean values and variances of the
statistics are computed and the kriging interpolation
models are individually updated. This step involves
the REML estimation of the covariance parameters
based on the modified covariance matrix (Eq. 8)
once for each kriging predictor of the statistics
and all entries of the Cholesky decomposition of
the variance-covariance matrix of the statistics. The
kriging interpolation of the Cholesky decomposition
of the variance-covariance matrix of the statistics
is based on the same kriging model (Eq. 3) as
used for the interpolation of the statistics but with
separately fitted parameters. Besides the calculation
of the Jacobian of the statistics, as a final step to
calculate the approximation to the quasi-score, the
kriging prediction variances (Eq. 9) of the statistics are
added to the kriging interpolation V̂ in Eq. 10. Note
that this only requires the calculation of the kriging
prediction variances by Eq. 5 once for each statistic
since at this point the kriging equations have already
been solved for the prediction of the statistics at some
specific parameter value.

Based on the current estimated root θ̂k and
kriging interpolation models a stabilized version of

the Fisher quasi-scoring iteration is applied to solve
Eq. 10 including the step-length control problem
(Eq. 13) combined with a multi-start strategy to ensure
convergence. This leads to an improved estimate θ̂k+1
followed by the above described update procedure
of the quasi-score interpolation involving further
simulations.

AN ILLUSTRATIVE EXAMPLE

By way of example we shall demonstrate the
power of the proposed general parameter estimation
method in what follows.

2D BOOLEAN MODEL WITH DISCS
Let X be a stationary Boolean model in R2 with

intensity λ and with “typical” grain equal to a disc
of some fixed radius R, that is, X is a random closed
set of the form X =

⋃
i B(xi,R) where the centres

xi of the discs B(xi,R) of radius R are the points
of a homogeneous Poisson point process in R2 with
intensity λ (Schneider and Weil, 2008).

Since Boolean models in general have been paid
attention in many respects there exist many results
on the statistics of Boolean models in the literature,
in particular several special methods of parameter
estimation in Boolean models have been established
and investigated (Heinrich, 1993; Molchanov, 1997;
Chiu et al., 2013).

A certain method, which is known as the
method of intensities (Molchanov, 1997) or method
of densities (Chiu et al., 2013), relies on the fact
that the area fraction AA, the specific boundary
length LA and the specific Euler number χA of X
as the intensities/densities of the three Minkowski
functionals in R2 (Schneider and Weil, 2008) are given
as closed form expressions of, in the present example,
λ and R:

AA = 1− exp(−λπR2) , (17)

LA = 2λπRexp(−λπR2) , (18)

χA = (λ −λ
2
πR2)exp(−λπR2) . (19)

Solving for λ and R leads to

λ =
χA

1−AA
+

1
4π

L2
A

(1−AA)2 , (20)

R =
2LA(1−AA)

4π(1−AA)χA +L2
A
, (21)

cf. Molchanov (1997, p. 82), or, using only AA and LA,
to

λ =
L2

A
−4π(1−AA)2 · ln(1−AA)

, (22)
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R =
−2(1−AA) · ln(1−AA)

LA
. (23)

Replacing the model characteristics AA, LA and χA by
certain corresponding empirical counterparts will lead
to estimators of λ and R.

In the following we always assume that we
observe our model X in some rectangular window W .
However, we distinguish the following two cases. On
the one hand, we use the fact that X restricted to
W is essentially a finite union of discs from which
the area AX(W ), the boundary length LX(W ) and
the Euler number χX(W ) of X within W can be
computed exactly (Tscheschel, 2005). This results in
the (unbiased) estimators

ÂA =
AX(W )

A(W )
, L̂A =

LX(W )

A(W )
, χ̂A =

χX(W )

A(W )
,

(24)
where A(W ) is the area of W . Inserting these estimators
into Eqs. 20 and 21 gives the estimator (λ̂MIa, R̂MIa)
for (λ ,R), inserting instead into Eqs. 22 and 23 gives
(λ̂MIb, R̂MIb).

On the other hand, we consider the case that X
restricted to W is only observable in a discretized form,
i.e., on a rectangular lattice of some lattice constant a.
In this case we use estimators ÃA, L̃A, and χ̃A for AA,
LA and χA, respectively, along the lines given in Ohser
and Mücklich (2000, sect. 4.2, filter mask F1), finally
resulting in (λ̃MIa, R̃MIa) when inserting in Eqs. 20 and
21, and (λ̃MIb, R̃MIb) when inserting in Eqs. 22 and 23.

Subsequently, in the application of quasi-score
estimation, either the triple (ÂA, L̂A, χ̂A) or the triple
(ÃA, L̃A, χ̃A) will play the role of the set of statistics
Y = T (X).

EXACT QUASI-SCORE ESTIMATION

Due to unbiasedness the expected values of
(ÂA, L̂A, χ̂A) are Z(λ ,R) = (AA,LA,χA), explicitly
given by Eqs. 17–19. This in turn leads to

∂Z(λ ,R)
∂ (λ ,R)

= exp(−λπR2)

×

 πR2 2λπR
2πR(1−λπR2) 2πλ (1−2λπR2)

1−3λπR2 +λ 2π2R4 2λ 2πR(λπR2−2)

.
Furthermore, also the matrix V (λ ,R) of variances and
covariances of (ÂA, L̂A, χ̂A) can be calculated, at least
numerically.

The simplest case is the variance VAA =

E[AX(W )2/A(W )2]−A2
A of ÂA. We have

VAA =
1

A(W )2

∫
CAA(h)γW (h)dh−A2

A ,

where CAA(h) = 2AA− 1+(1−AA)
2 exp(λγB(o,R)(h))

is the covariance of X and γW (h) = A(W ∩ (W −h)) is
the set covariance of W (Chiu et al., 2013).

VAA is directly connected to the second-order
moment measure MAA of the random measure AX ,
i.e., MAA(W1,W2) := E[AX(W1)AX(W2)], and VAA =
MAA(W,W )/A(W )2 − A2

A. Note that CAA is a density
of MAA with respect to the 4-dimensional Lebesgue
measure. In order to determine the variances and
covariances Vi j, i, j ∈ {A,L,χ}, it is thus necessary
to know the (mixed) second-order moment measures
Mi j, i, j ∈ {A,L,χ}, and, if existing, their densities
Ci j with respect to Lebesgue measure. For exactly the
model under consideration these densities have been
derived in the literature (Mecke, 2001; Torquato, 2002;
Ballani, 2007). For instance, we have

VLL =
1

A(W )2

∫
CLL(h)γW (h)dh−L2

A ,

CLL(h) =
(

λ
2
[

2πR−1[0,2R)(‖h‖)2Rarccos
(
‖h‖
2R

)]2

+λ1[0,2R)(‖h‖)
4R2

r
√

4R2− r2

)
CAA(h) ,

and

VAL =VLA =
1

A(W )2

∫
CAL(h)γW (h)dh−AALA ,

CAL(h) = LA−λCAA(h)
[

2πR

−1[0,2R)(‖h‖)2Rarccos
(
‖h‖
2R

)]
,

where CAA(h) = (1− AA)
2 exp(λγB(o,R)(h)). It turns

out that all measures Mi j but Mχχ have a density
with respect to Lebesgue measure. The “density” of
Mχχ contains a certain delta component (Mecke, 2001)
which can be treated separately without any problem.

All in all, for the present example of a Boolean
model the quasi-score function Q is known exactly in
the sense that it can be evaluated numerically. Hence,
here we are in the position to find the estimates λ̂EQS

and R̂EQS as the root of the exact quasi-score (EQS)
equation Q((λ ,R),y) = 0 by the type of iteration
shown in Eq. 12.
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SIMULATED QUASI-SCORE
ESTIMATION
For the simulation-based quasi-score (SQS)

estimation we consider the two cases that both the
observation y and each of the realizations of the
statistics of Ȳ (λ ,R) of the Boolean model used
during the estimation procedure is either given by
the exact estimators (ÂA, L̂A, χ̂A) or by the estimators
(ÃA, L̃A, χ̃A) coming from the discretization. Thus we
obtain again two sets of estimators (λ̂SQS, R̂SQS) and
(λ̃SQS, R̃SQS), respectively, for (λ ,R).

SIMULATION STUDY
We conducted a simulation study by applying

the above described estimation methods SQS, EQS
and MIa, MIb to the same set of model realizations.
The first part of this study investigates the mean
squared errors between re-estimated model parameters
and true ones over randomly sampled locations of
the parameter space. The second part addresses the
estimation precision of the proposed method based on
the SQS.

Throughout the whole simulation study the
observation window W was chosen as [0,5]2.
Intentionally the lattice constant a was 0.05 leading
to a relatively coarse discretization of 100 × 100
pixels. Further, the following process parameters of
the SQS estimation method were fixed. The amount
of sampling locations n0 used to construct the initial
quasi-score approximation was set to 12. The number
of simulation replications spent for each sample
location was fixed to 100 throughout the whole
estimation procedure. The parameter space for the
feasible values of θ = (λ ,R) was set to the intervals
[5,30] and [0.01,0.2] for λ and R, respectively.
The maximum number of admissible new sampling
locations added during the iterations of the method was
restricted to 50.

Within the first part of the study N = 200 parameter
values of λ and R were sampled from a uniform
distribution, each parametrized by the interval [8,25]
and [0.05,0.18], respectively. Simulating the model X
once for each θi = (λi,Ri), i = 1, . . . ,N yielded the
observations xi. The exact statistics (ÂA, L̂A, χ̂A) and
their counterparts (ÃA, L̃A, χ̃A) for the discretizations
were both applied to these observations in order to
compare the performance of the estimation methods.
Fig. 1 presents the true parameters plotted against
their estimated values obtained from a single-run SQS
and EQS estimation for each θi. The mean number
of newly added locations in case of running the
SQS estimation method based on the exact statistics

(Eq. 24) amounted to 20 whereas using the discretized
versions required 35 additional sampling locations on
average.

The Bayesian root mean square error (BRMSE)

BRMSE =

√
1
N

N

∑
i=1

(θik− θ̂ik)2, k = 1,2

of N re-estimated parameters was separately calculated
over θ̂i = (λ̂i, R̂i) for each estimation method.

For 13 out of 200 single-runs of the SQS
estimation method the current implementation caused
the method to fail to converge towards the “correct”
root. This algorithmic behaviour due to the current
implementation of the SQS estimation method is
induced by the non-convexity properties of the quasi-
score in general, thus making it difficult to distinguish
between multiple roots (Heyde, 1997, sect. 13.3).

First of all the BRMSE for the estimators based
on the method of intensities, see Table 1, show a well-
known behaviour, namely, that MIb outperforms MIa
due to the fact that the estimators for the specific Euler
number χA have much higher variability than that for
AA and LA (Chiu et al., 2013). For both MIa and MIb
the relatively high BRMSE of λ̃ and R̃ compared to
that of λ̂ and R̂ is due to the fact that the estimators
L̃A and χ̃A based on the discretized realizations are not
unbiased for LA and χA, respectively, see Serra (1982);
Ohser and Mücklich (2000). This also leads to a bias
for λ̃ and R̃, which is here quite pronounced because
of the very coarse applied discretization.

Table 1. Bayesian root mean square error (BRMSE)
for the estimators of λ and R according to the method
of intensities with (AA,LA,χA) (MIa), with (AA,LA)
(MIb), exact quasi-score (EQS), and simulated quasi-
score (SQS) estimation. Values are rounded to two
significant digits. The simulation study standard errors
are given in parentheses. The exact quasi-score is not
applicable for the discretized data.

Method BRMSE(λ̂ ) BRMSE(λ̃ )
MIa 1.8 (0.21) 9.5 (0.36)
MIb 1.3 (0.10) 7.0 (0.21)
EQS 1.1 (0.07) –
SQS 2.5 (0.32) 2.5 (0.34)

Method BRMSE(R̂) BRMSE(R̃)
MIa 0.011 (0.0029) 0.299 (0.0674)
MIb 0.003 (0.0003) 0.044 (0.0017)
EQS 0.003 (0.0002) –
SQS 0.005 (0.0009) 0.007 (0.0011)
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Fig. 1. Plot of 200 re-estimated parameters vs.
true parameters for (a) λ and (b) R using the
estimators (λ̂SQS, R̂SQS) (red), (λ̃SQS, R̃SQS) (blue) and
(λ̂EQS, R̂EQS) (black).

Furthermore, although the BRMSE of the new
SQS estimation method using exact statistics is higher
than that of MIa and MIb, the BRMSE of the EQS
estimation method is smaller than that of MIb, i.e.,
EQS even outperforms MIb. On the one hand this
demonstrates that the quasi-score estimation method
can use the available statistical information in an
optimal way, thus yielding more precise parameter

estimates. On the other hand it shows that the applied
simulation-based implementation of the quasi-score
method (SQS) cannot fully exhaust the theoretically
possible potential. The reasons for the latter are that
Monte Carlo simulation is involved and that in a
few cases “wrong” roots are found (see the above
discussion), leading to a higher BRMSE.

However, Table 1 also shows that the BRMSE of
the new SQS estimation method using the exact or
discretized version of the statistics are of the same
order of magnitude (cf. also Fig. 1) and that for
the case of discretized data SQS clearly outperforms
MIa and MIb. This is because in the SQS estimation
method the observed and simulation-based statistics
are equally treated with respect to the way of how the
data is observed, namely, in both cases the estimation
of the statistics is based on the discretized model
realizations. In particular it is not important whether
or not the characteristics (AA,LA,χA) are estimated
unbiasedly. More generally, it is even irrelevant for the
SQS estimation procedure whether the used statistics
possess any direct interpretation, e.g., whether they are
estimators of any certain model characteristics. This is
one of the fundamental strengths of the proposed SQS
estimation method.

In the remainder of this section we assess the
precision of the SQS estimates and compare it to
the error predicted by the inverse quasi-information
matrix. We generated N = 100 observations of the
model at the fixed parameter value θ = (15,0.15)
and applied the above two kinds of statistics to these
observations as we did in the first part. The SQS
estimation method was applied, the resultant estimates
are shown in Fig. 2 including the MIa and MIb
estimates. Fig. 2a shows the comparable performance
of the three estimators (MIa, MIb and SQS) in case
of exact statistics. Fig. 2b shows again the problem
generated by the bias of the estimators of LA and χA
in case of discretized data leading to a substantial bias
for the method-of-intensities estimators.

The comparison of the empirical estimation error
with the predicted error is based on the empirical mean
squared error matrix MSEM = 1

N ∑
N
i=1(θ− θ̂i)(θ− θ̂i)

t

either in the case of the exact statistics, denoted as
M̂SEM, or for their discretized counterparts, M̃SEM.
They read

M̂SEM =

(
2.03 −3.05 ·10−3

−3.05 ·10−3 1.56 ·10−5

)
,

M̃SEM =

(
2.68 −5.00 ·10−3

−5.00 ·10−3 2.80 ·10−5

)
.

Eq. 15 suggests that the inverse of the quasi-
information matrix (Eq. 14) should be very similar to
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the mean squared error matrix of θ̂ . We thus compare
this to the average

Σ =
1
N

N

∑
i=1

Î(θ̂i)
−1 ∈ Rq×q (25)

of the approximated quasi-information matrices in
the estimated parameter value for each of the 100
simulations, which read, respectively,

Σ̂ =

(
2.03 −4.27 ·10−3

−4.27 ·10−3 2.99 ·10−5

)
,

Σ̃ =

(
3.19 −2.86 ·10−3

−2.86 ·10−3 2.61 ·10−5

)
.

Both compare well to the corresponding observed
mean squared error matrix. Fig. 3 compares them
graphically. The exact quasi-score method provides a
different quasi-information matrix,

I(θ)−1 =

(
1.30 −1.89 ·10−3

−1.89 ·10−3 5.07 ·10−6

)
,

which would suggest a lower estimation error. This
corresponds to the fact that this method is more
precise. It can be expected that using more simulations
would allow to increase the performance of the
SQS method towards EQS. The theoretical and
empirical evidence thus suggests that the inverse
quasi-information might serve as an estimate for the
precision of the method. More studies are, however,
required to support generalizability of this result.

DISCUSSION

The new simulation-based quasi-likelihood
method allows to estimate parameters for statistical
models where neither the likelihood nor moments or
characteristics can be computed directly. The user
is only required to provide informative statistics
and a method to simulate realizations of these
statistics for different model parameters. Based
on an iterative simulation procedure providing
successively improved approximations to the quasi-
score function, the estimation algorithm provides
a numerical approximation to the efficient quasi-
likelihood estimation method. The inverse of the quasi-
information matrix computable on the approximation
seems to provide a good measure of the estimation
error. This allows estimation of model parameters in
very general settings.
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Fig. 2. Re-estimated parameters by SQS (red), MIa
(green), MIb (blue) for 100 realizations of the data at
(λ ,R) = (15,0.15) using the statistics (a) (ÂA, L̂A, χ̂A)

or (b) (ÃA, L̃A, χ̃A).

Obviously the procedure is still in its infancy. The
global convergence is not guaranteed by the current
algorithm and led to substantial errors in about 7%
of the runs. The error is still substantially above the
theoretical limit given by the exact quasi-likelihood
method. The exact quasi-likelihood method can
typically not be applied since the necessary ingredients
(moments of statistics and their derivatives) often
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can not be computed. However, if they could be
computed and the statistics are well chosen, one
would typically expect better or similar performance
to most known estimation procedures. ML estimators
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Fig. 3. Re-estimated parameters by the SQS for 100
realizations of the data at (λ ,R) = (15,0.15) using
the statistics (a) (ÂA, L̂A, χ̂A) or (b) (ÃA, L̃A, χ̃A). The
2σ -ellipses are given for the averaged inverse quasi-
information (black), the empirical mean squared error
matrix of the residuals (red), and the exact inverse
quasi-information matrix of the exact quasi-likelihood-
method (green). The figure illustrates the matching of
the first two.

in exponential families are special cases of quasi-
likelihood estimators. Quasi-likelihood estimators use
moments more efficiently than typical method-of-
moment estimators and can use more information.
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