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ABSTRACT

Shape from texture refers to the extraction of 3D information from 2D images with irregular texture. This paper
introduces a statistical framework to learn shape from texture where convex texture elements in a 2D image are
represented through a point process. In a first step, the 2D image is preprocessed to generate a probability map
corresponding to an estimate of the unnormalized intensity of the latent point process underlying the texture
elements. The latent point process is subsequently inferred from the probability map in a non-parametric,
model free manner. Finally, the 3D information is extracted from the point pattern by applying a locally scaled
point process model where the local scaling function represents the deformation caused by the projection of a
3D surface onto a 2D image.

Keywords: 3D scenes, convex texture elements, locally scaled point processes, near regular texture, perspective
scaling, shape analysis.

INTRODUCTION

Natural images contain a variety of perceptual
information enabling the viewer to infer the three-
dimensional shapes of objects and surfaces (Tuceryan
and Jain, 1998). Stevens (1980) observed that surface
geometry mainly has three effects on the appearance
of texture in images: foreshortening and scaling of
texture elements, and a change in their density. Gibson
(1950) proposed the slant, the angle between a normal
to the surface and a normal to the image plane, as a
measure for surface orientation. Stevens amended this
by introducing the tilt, the angle between the surface
normal’s projection onto the image plane and a fixed
coordinate axis in the image plane. In this paper, we
will directly infer the surface normal from a single
image taken under standard perspective projection as
shown in Fig. 1.

Statistical procedures for estimating surface
orientation often make strong assumptions on the
regularity of texture. Witkin (1981) assumes observed
edge directions provide the necessary information,
while Blostein and Ahuja (1989) consider circular
texture elements with uniform intensity. Blake and
Marions (1990) consider the bias of the orientation of
line elements isotropically oriented on a plane in 3D
space, induced by the plane’s orientation under

(a) Tiling A

(b) Tiling B

(c) Bricks

Fig. 1. Original natural scenes (left) and the estimated
3D orientation towards the camera (right). The surface
normal is indicated by δ in the coordinate system
defined by (X1,X2,X3). The field of view of the camera
is assumed to be driven by a wide angle setting of
φc = 54◦.
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orthographic projection, along with a computational
approach related to Kanatani’s texture moments
(Kanatani, 1989).

Malik and Rosenholtz (1997) locally estimate
“texture distortion” in terms of an affine
transformation of adjacent image patches. The strong
homogeneity assumption underlying this approach has
been relaxed by Clerc and Mallat (2002), to a condition
that is difficult to verify in practice. Forsyth (2006)
eliminates assumptions on the non-local structure of
textures (like homogeneity) altogether and aims to
estimate shape from the deformation of individual
texture elements. Loh and Hartley (2005) criticize
prior work due to the restrictive assumptions related
to homogeneity, isotropy, stationarity or orthographic
projection, and claim to devise a shape-from-texture
approach in the most general form. Their work,
however, also relies on estimating the deformation of
single texture elements, similar to Forsyth (2006).

We propose a general framework for inferring
shape from near regular textures, as defined by Liu et
al. (2009), by applying the locally scaled point process
model of Hahn et al. (2003). This framework enables
the simultaneous representation of local variability and
global regularity in the spatial arrangement of texture
elements which are thought of as a marked point
process (Fig. 2). We preprocess the image (Fig. 2.1)
to obtain a probability map (Fig. 2.2) representing
an unnormalized intensity estimate for the underlying
point process, subsequently apply a non-parametric
framework to infer the point locations (Fig. 2.3) and
based on the resulting point pattern (Fig. 2.4), learn
the parameters of a locally scaled point process model
to obtain a compact description of 3D image attributes
(Fig. 2.5).

Point process models have previously been applied
in image analysis applications where the goal is the
detection of texture elements, see, e.g., Lafarge et
al. (2010) and references therein. These approaches
usually apply a marked point process framework, with
marks describing the texture elements. Such set-ups
rely on a good geometric description of individual
texture elements, limiting the class of feasible textures.
As our goal is not the detection of individual texture
elements but the extraction of 3D information, we omit
the modeling of each texture element and infer the
latent point locations in a model free manner. Thus,
our sole assumption regarding texture element shape
is approximate convexity which offers considerable
flexibility.

1. Original image

2. Probability map

3. Point assignment

4. Point process realization

5. 3D orientation

Fig. 2. Sketch of the step sequence proposed for
inferring shape from texture.
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The remainder of the paper is organized as follows.
The next section contains preliminaries on image
geometry followed by the method section describing
the image preprocessing, the point pattern detection
and the point process inference framework. We then
present results for both simulated and real images with
near regular textures. The paper closes with a short
discussion section.

PRELIMINARIES

Let
P = {X ∈ R3 : 〈δ ,X〉+h = 0} , (1)

with ‖δ‖ = 1 and 〈δ ,X〉 < 0 denote a plane in 3D
with unknown unit normal δ and distance h from the
origin. We assume δ to be oriented towards the camera,
forming obtuse angles 〈δ ,X〉< 0 with projection rays
X . The world coordinates X = (X1,X2,X3)

> and image
coordinates x = (x1,x2)

> are aligned as shown in Fig.
3. Here, we denote the image domain by D and assume
the image to be scaled to have fixed area, ν2(D) = a,
where ν2 is the two-dimensional Lebesgue measure.

We consider the basic pinhole camera (Hartley and
Zisserman, 2000) and among the internal parameters,
we only look at the focal length f > 0 which depends
on the field of view (Fig. 3). As usual, we identify
image points and rays of the projective plane through

X = (x1,x2,− f )> . (2)

An image point X given by Eq. 2 meets P in λX with

λ =− h
〈δ ,X〉

, λ > 0 . (3)

It follows that a point XP in P is related to the image
point X through

XP = XP(x1,x2) =−
h
〈δ ,X〉

X . (4)

A homogeneous texture covering P induces an
inhomogeneous texture on the two-dimensional image
plane with density given by the surface element

dXP = ‖∂x1XP×∂x2XP‖ν2(dx)

=− h2 f
〈δ ,X〉3

ν
2(dx). (5)

Taking, for instance, the fronto-parallel plane δ =
(0,0,1)> results by Eq. 2 merely in the constant
scale factor (h/ f )2, i.e., the homogeneous density
(h/ f )2ν2(dx). However, for arbitrary orientation δ ,

this factor depends on X , as illustrated in Fig. 4.
Eq. 5 then quantifies perspective foreshortening and
inhomogeneity of the texture, respectively, as observed
in the image, and mathematically represents the
visually apparent texture gradient.

Fig. 3. The camera with focal length f is oriented
towards the negative X3-halfspace. The scaled visible
image domain is D= [−a/2,a/2]× [−1/2,1/2]. Given
the field of view in terms of an angle φc, we have
f = (a/2)/ tan(φc/2).

(a) δ = ( 1√
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Fig. 4. Mappings of regular homogeneous point
patterns in R3 onto a 2D-plane. The simulations
are based on the parameters D = [−1/2,1/2] ×
[−1/2,1/2], h = 20 and φc = 27◦ ( f = 0.98).

METHODS

In a first step, we apply image preprocessing that
generates a probability map Y = {Y (x) : x ∈ D0, 0 ≤
Y (x) ≤ 1} representing the spatial arrangement of
texture elements in the original image plane D0. Here,
we assume that D0 is rectangular. To this end, two
elementary techniques are locally applied: Boundary
detection and the corresponding distance transform.
The former step entails either gradient magnitude
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computation using small-scale derivative-of-Gaussian
filters (Canny, 1986) or, for texture elements with
less regular appearance, the earth-mover’s distance
(Pele and Werman, 2009) between local histograms.
Inspecting in turn the histogram of the resulting
soft-indicator function for boundaries enables one
to determine a threshold and apply the distance
transform.

In our framework, the texture elements are
regarded as a realization of a marked point process
where the underlying point pattern is latent. The value
of the probability map Y (x) in x ∈ D0 denotes the
probability that one of the latent points is located in
x. To recover the latent point pattern based on the
information in Y , we first search for local maxima in
Y . That is, let Wx = [x1−k1,x1+k1]× [x2−k1,x2+k1]
and set

Φ = {x ∈ D0 : Wx ⊂ D0, Y (x) = max
z∈Wx

Y (z)} , (6)

for some fixed positive k1 with an upper bound
ensuring that ∩x∈D0Wx = /0. We then define a
neighbourhood relation on Φ by setting x1 ∼ x2 if

min
z∈[x1,x2]

Y (z) ≥ k2 max{Y (x1),Y (x2)} , (7)

where x1,x2 ∈Φ, [x1,x2] denotes the line from x1 to x2

and k2 is a constant with 0< k2 < 1. We may now write
Φ as a union of disjoint neighbourhood components,
Φ = ∪i=1,...,n0 Ci, where

Ci = {{xi1 , ...ximi} ⊆Φ : (8)

∀k ∈ {1, ...,mi},∃l ∈ {1, ...,mi},k 6= l : xik ∼ xil} .

That is, each x ∈ Ci is neighbour with at least one
point in Ci \ x. In the unlikely case that Φ = C1, k1
and k2 need to be re-specified, or the image is not
appropriate or not appropriately preprocessed for our
shape-from-texture approach. For fixed k1 and k2, the
decomposition of Φ is almost surely unique, provided
that the pixel values are measurable on a continuous
scale.

Under the assumption that the texture elements
are close to convex sets, two points x1 and x2 in Φ

are neighbours if and only if they likely fall within
the same texture element. Hence, we first estimate the
latent point process Ψ0 in the observation window D0
as

Ψ0 = {x1, . . . ,xn0 : Y (xi) = max
z∈Ci

Y (z)} . (9)

To avoid boundary effects, we afterwards eliminate
all elements of Ψ0 not located in D := [min

x1
(D0) +

k1,max
x1

(D0)− k1]× [min
x2

(D0)+ k1,max
x2

(D0)− k1] and

continue the analysis with the resulting point process
realization in D,

Ψ = {x ∈Ψ∩D} , (10)

where min
x
(D0) and max

x
(D0) define the bounding box

of the original image plane D0. The total number of
points in Ψ is denoted by n.

Formally, a point process can be described as a
random counting measure N(·), where N(A) is the
number of events in A for a Borel subset A of the
relevant state space, in our context the image domain
D. The intensity measure of the point process is given
by Λ(A)=EN(A) and the associated intensity function
is

α(x) = lim
ν2(dx)→0

EN(dx)
ν2(dx)

. (11)

For a homogeneous point process, it holds that α(x) =
β for some β > 0, while for an inhomogeneous point
process where the inhomogeneity stems from local
scaling (Hahn et al., 2003), we obtain

α(x) = βc−2
η (x) , (12)

for some scaling function cη : R2 → R+ which we
assume depends on a set of parameters η . That is,
η controls the amount of scaling. The point process
is homogeneous if η = 0, whereas η 6= 0 indicates
heterogeneity. Examples are given in Fig. 5 (a). The
scaling function cη acts as a local deformation in that
it locally affects distances and areas. More precisely,
νd

c (A) =
∫

A cη(x)−dνd(dx), where νd denotes the d-
dimensional Lebesgue measure and νd

c its scaled
version for d = 1,2.

For identifiability reasons, Prokešová et al. (2006)
propose normalizing cη to conserve the total area of
the state space. That is, they require that

ν
2(D) =

∫
D

c−2
η (x)ν2(dx) =

∫
D

γ(η)c̃−2
η (x)ν2(dx) ,

(13)
where c̃−2

η (x) denotes the unnormalized scaling
function and γ(η) the normalizing constant. Hahn et
al. (2003) and Prokešová et al. (2006) specifically
consider the exponential scaling function with cη(x) ∝

exp(η>x). This scaling function is particularly
attractive in that locally scaled distances can be
calculated explicitly,

ν
1
c (x

i,x j) = ν
1(xi,x j)

∣∣∣c−1
η (xi)− c−1

η (x j)

ηT (x j− xi)

∣∣∣ , (14)

for any xi,x j ∈ D, where ν1(·) corresponds to the
length of the line segment [xi,x j] between xi and x j,
and ν1

c (·) denotes its scaled version. Examples of
exponentially scaled distances are given in Fig. 5b.
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(i) η> = (0, 0) (ii) η> = (0.5, 0.5) (iii) η> = (0.5, −1) (iv) η> = (−1, 1)

(a) Point process realizations

(i) η> = (0, 0) (ii) η> = (0.5, 0.5) (iii) η> = (0.5, −1) (iv) η> = (−1, 1)

(b) Exponentially scaled distances from the coordinates (0.5,0.5)

Fig. 5. Exponential scaling effects of varying strength in D = [0,1]× [0,1]. (a) shows four point process
realizations sampled from a locally scaled point process model due to Hahn et al. (2003). Apart from η , all model
components are kept fixed. (b) exemplifies the exponentially scaled distances under the different specifications of
η in (a). Increasing darkness indicates decreasing distance.

Here, we employ the density in Eq. 5 as scaling
kernel, i. e. c̃−2

δ (η)
(x| f ,h)ν2(dx) = dXP, where we

choose spherical coordinates

δ = δ (η1,η2) (15)

= (sinη1 cosη2,sinη1 sinη2,cosη1)
>,

with η1 ∈ [0,u] and η2 ∈ [0,2π]. The upper limit
u restricting the range of the scaling parameter η1
ensures that 〈δ ,X〉 < 0 and therefore depends on the
focal length f as well as on the size and location of the
observation window D. As suggested by Prokešová et
al. (2006), we normalize the scaling function such that
Eq. 13 holds. That is, we solve

ν
2(D) = a =

∫
D

γ(δ ,h, f )dXP . (16)

It follows that

γ(δ ,h, f ) =
1

16h2 f 2δ3
(aδ1−2 f δ3−δ2)

× (aδ1−2 f δ3 +δ2)

× (aδ1 +2 f δ3−δ2)

× (aδ1 +2 f δ3 +δ2) .

A more general result for D= [a1,a1]× [b1,b2] is given
in the Appendix.

Under the model in Eq. 5, the intensity function in
Eq. 12 becomes

α(x) = β
γ
(
δ (η1,η2),h, f

)
h2 f∣∣〈δ (η1,η2) ,X〉
∣∣3 , (17)

with X = (x1,x2,− f )> as in Eq. 2. As a byproduct,
the unknown plane parameter h cancels. It sets
the absolute scale and cannot be inferred from a
single image. Furthermore, the scaling function is
computationally tractable and, as for the exponential
scaling discussed above, the scaled distance function
is available in closed form,

ν
1
c ([x

i,x j]) = ν
1([xi,x j]) × γ(δ ,h, f

) 1
2 (18)

×

∣∣∣∣∣ 2h
√

f
〈δ ,X i−X j〉

(
1

〈δ ,−X i〉 1
2
− 1

〈δ ,−X j〉 1
2

)∣∣∣∣∣ ,
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(a) η = (45◦,0◦)> (b) η = (30◦,45◦)>

Fig. 6. Examples of distances from the point (0,0)
within the observation window D = [−1/2,1/2] ×
[−1/2,1/2], under scaling assumptions due to Eq. 18.
Darker shades of gray indicate smaller distances.

provided that the basic requirement 〈δ ,X i〉 < 0 is
fulfilled for all i = 1, . . . ,n. Eq. 18 can easily be
recalculated by applying the coarea formula,

ν
1
c ([x

i,x j]) = ν
1([xi,x j]

)∫ 1

0
c−1

δ
(xi + t(x j− xi))dt ,

(19)
see Krantz and Parks (2008, Ch. 5) for more details.

Examples of scaled distances are given in Fig. 6.
When compared with Fig. 5, we see that the
perspective scaling in Eq. 17 results in similar distance
scaling as the exponential scaling while it also
provides a coherent description of the perspective
foreshortening.

For a given image, we assume that the focal length
f is known. It remains to estimate the parameters
(β ,η1,η2) of the intensity function in Eq. 17 based
on the estimated point pattern Ψ. The desired 3D
image information, the slant and the tilt of the surface,
may then be characterized by the scaling parameter
estimates η̂1 and η̂2. The parameter estimation is
performed by maximizing the composite likelihood,
see, e.g., Møller (2010), that takes the form

L(Ψ|β ,η1,η2) ∝ exp(−βν
2(D)) β

n
n

∏
i=1

c−2
η (xi) .

(20)
The maximum composite likelihood estimate for β

is β̂ = n
ν2(D)

. For the remaining two parameters–the
parameters of interest in our setting–we maximize the
function

l(Ψ|β̂ ,η1,η2) (21)

= n log
( n

ν2(D)
−1
)
+

n

∑
i=1

log(c−2
η (xi)) .

Note that Eq. 21 is equal to the profile composite log-
likelihood, i. e. the logarithm of the right-hand side in
Eq. 20 with β replaced by its estimate. If Ψ is a Poisson
process, the estimate of (β ,η1,η2) is the maximum
likelihood estimate.

RESULTS

SIMULATION STUDIES

We first present the results of a simulation study where
we analyse sets of 3D point coordinates sampled from
either a perfectly regular pattern or a homogeneous
Poisson process and subsequently projected onto the
2D-plane D = [−1/2,1/2]× [−1/2,1/2] (Fig. 4 and
Fig. 7).

We estimate the scaling parameters associated with
the synthetic patterns via the composite likelihood
in Eq. 21. The true parameter values and the
corresponding estimates are given in Table 1. While
the estimation procedure is able to reconstruct the
true values with a reasonable accuracy, the results
are slightly better for the regular patterns than for
the random patterns. These results are representative
for several further such examples (results not shown).
We conclude that the composite likelihood is able
to identify the scaling parameters of the perspective
scaling function even though it is specified using the
intensity of the point process only and thus ignores
higher order characteristics. That is, for quantifying the
scaling effects, a model not accounting for interaction
is sufficient even if the process is repulsive as in Fig. 4.

(a) δ = ( 1√
2
,0, 1√

2
)> (b) δ = ( 1

2
√

2
, 1

2
√

2
,
√

3
2 )>

Fig. 7. Simulated Poisson point patterns with 3D shape
given by the outer normals in the subfigure captions.
The internal parameters correspond to the settings in
Fig. 4 and Fig. 6.
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Table 1. True angles and composite likelihood
estimates for the surface normals of the simulated
point patterns in Fig. 4 and 7. Regular pattern type
refers to the images in Fig. 4 and Poisson type to the
images in Fig. 7.

Pattern type (η1,η2) (η̂1, η̂2)

Regular (45◦,0◦) (45.5◦,0.0◦)
Poisson (45◦,0◦) (46.2◦,0.7◦)
Regular (30◦,45◦) (29.9◦,45.7◦)
Poisson (30◦,45◦) (26.2◦,45.5◦)

In the following, we evaluate and discuss the point
detection procedure proposed in Eq. 6–Eq. 10 before
estimating the scaling parameters. To investigate how
violations of convexity in the shapes of the texture
elements may affect the estimation of the scaling
parameters, we generate images of size 1800× 1800
pixels with varying proportions and arrangements of
nonconvex shapes (Fig. 8). The true scaling effects are
η1 = 20◦ and η2 = 25◦, and the overall packing density
is the same in each image.

Fig. 8 shows the textured scenes and the estimated
point process realizations for k1 = 65. For the image
in Fig. 8a containing convex shapes only, all texture
elements are correctly detected if the neighbourhoods
are determined by k1 = 65 or k1 = 75 . For the scenes
in Fig. 8b,c that are partly covered by concave shapes,
k1 = 65 seems more appropriate than k1 = 75. To
avoid boundary effects, the outermost 75 pixels are not
considered as potential point locations. Note that the
threshold k2 is of no relevance here, since all images
are binary.

The estimated scaling parameters for the point
patterns in Fig. 8 are given in Table 2. While
the estimates are quite accurate when all the
texture elements are convex, the accuracy deteriorates
somewhat with increased proportion of nonconvex
shapes. In particular, we see that a grouping of the
nonconvex shapes yields a lower accuracy compared
to a random distribution of the nonconvex shapes.

(a)

(b)

(c)

(d)

(e)

Fig. 8. Point process estimation in scenes with different
amounts of nonconvex texture elements. The focal
length corresponds to f = 1.17 (φc = 54◦).
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Table 2. Composite likelihood estimates for the surface normals of the simulated point patterns in Fig. 8. Random
means that the concave elements are randomly distributed among the convex elements, whereas in a clustered
arrangement, the concave shapes appear in groups.

# points (η̂1, η̂2) concave shapes [%] arrangement

(a) 84 (20.32◦,23.66◦) 0 —
(b) 86 (19.21◦,31.00◦) 20 random
(c) 85 (13.66◦,20.89◦) 33 random
(d) 86 (16.34◦,39.20◦) 33 one cluster
(e) 79 (14.31◦,38.36◦) 33 four clusters

NATURAL SCENES
For the analysis of real natural scenes, we apply our
methodology to the set of tiling and brick images
shown in Fig. 1. The original images are of size 1280×
960 pixels, and during the preprocessing, they are
downsized to 1166× 846 pixels in order to eliminate
boundary effects in the point detection. More precisely,
we cut off bounding boxes of width 115 pixels from
the original scenes, since we consider estimation of the
latent point process Ψ with k1 ∈ {35,45, ...,105,115}.
For each value of k1, we generate a point process
realization and subsequently estimate its scaling
parameters, i. e. the angles η1 and η2 which in turn
determine the unit normal vector δ of the original
plane in 3D.

The point detection is very robust in the selection
of the threshold value k2, and threshold values from

0.15 to 0.5 have limited effects on the results.
It is somewhat more sensitive to changes in the
neighbourhood size k1 as illustrated graphically in
Fig. 9. For the tiling images neighbourhoods from
55× 55 to 95× 95 result in similar point patterns
and hence in similar scaling parameter estimates. For
the bricks scene, on the other hand, the estimates
vary considerably and slightly smaller neighbourhoods
seem to be needed.

In the following, we employ neighbourhoods of
size 75× 75 pixels for the tiling scenes and 55× 55
pixels for the bricks scene, with a threshold of k2 =

0.25 for the neighbourhood relation in all cases. The
probability maps and the resulting point patterns are
shown in Fig. 10.

(a) Tiling A (b) Tiling B (c) Bricks

Fig. 9. Estimation of the unit normal δ subject to different specifications of the neighbourhood size k1.
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(a) Tiling A

(b) Tiling B

(c) Bricks

Fig. 10. Estimated probability maps and point
configurations for the natural scenes in Fig. 1.

For deriving the information on camera positioning
and angle from the point configurations in Fig. 10,
we project the point process realizations onto an
observation window D of dimension [−0.69,0.69]×

[−0.50,0.50]. We further assume that the field of view
corresponds to a standard wide angle setting of φc =
54◦ and hence take f = 1.35 as a basis, the same
settings as we applied in the simulation examples
above. The resulting scaling parameter estimates are
listed in Table 3 and the 3D orientation of the camera
toward the textures is illustrated in Fig. 1.

Table 3. Perspective scaling parameter estimates for
the natural scenes in Fig. 1.

Texture type (η̂1, η̂2)

(a) Tiling A (22.1◦,94.7◦)
(b) Tiling B (12.2◦,66.7◦)
(c) Bricks (36.0◦,44.1◦)

DISCUSSION

This paper introduces a framework for extracting
3D information from a textured 2D image building on
the recently developed locally scaled point processes
(Hahn et al., 2003). The perspective scaling function
quantifies perspective foreshortening and the resulting
inhomogeneity of the texture. The framework is
quite flexible regarding assumptions on the texture
composition in that it only requires the texture
elements to be close to convex in shape and it
successfully extracts useful information related to
camera orientation.

The separation of image preprocessing and point
detection on one hand and the estimation procedure
for the scaling parameters on the other hand offers
great flexibility. We believe that the locally scaled
point process framework can be applied in more
general settings to analyze point patterns in images,
for instance, as a new additional inference step in
the texture detection algorithms discussed in Lafarge
et al. (2010) and references therein. Due to the low
computational budget of our framework, it also seems
feasible to combine it with image segmentation where
3D information is needed for several segments within
an image, each of which might be covered with a
different type of texture elements.

There are further considerable avenues for
development. One area for future development is to
build a large hierarchical framework where the three
inference steps, the image preprocessing, the point
detection and the parameter estimation, are joined
in an iterative fashion. A fully Bayesian inference
framework along the lines of the work of Rajala
and Penttinen (2012) could also be an alternative to

169



DIDDEN EM ET AL: Shape from texture using locally scaled point processes

the composite likelihood estimation performed here.
Future work will concentrate on embellishing our
inference framework.
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APPENDIX

In our data analysis, we assume that the image
domain is normalized such that D = [−a/2,a/2]×
[−1/2,1/2]. More generally, the image domain could
be of the form D = [a1,a2] × [b1,b2] for some
a1,a2,b1,b2 ∈R with a1 < a2 and b1 < b2. In this case,
the condition of conservation of the total area in (13)
becomes

ν
2(D) = (a2−a1)(b2−b1) =

∫
D

γ(δ ,d, f )dXP . (22)

It follows that

γ(δ ,h, f ) =
2

h2 f
(−(a1 +a2)δ1− (b1 +b2)δ2 + f δ3)

−1

× (a1δ1 +b1δ2− f δ3)

× (a1δ1 +b2δ2− f δ3) (23)
× (a2δ1 +b1δ2− f δ3)

× (a2δ1 +b2δ2− f δ3) .
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