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ABSTRACT

Many medical and biological problems require to extract information from microscopical images. Boolean
models have been extensively used to analyze binary images of random clumps in many scientific fields. In
this paper, a particular type of Boolean model with an underlying non-stationary point process is considered.
The intensity of the underlying point process is formulated as a fixed function of the distance to a region
of interest. A method to estimate the parameters of this Boolean model is introduced, and its performance
is checked in two different settings. Firstly, a comparative study with other existent methods is done using
simulated data. Secondly, the method is applied to analyze the longleaf data set, which is a very popular data
set in the context of point processes included in the R package spatstat. Obtained results show that the new
method provides as accurate estimates as those obtained with more complex methods developed for the general
case. Finally, to illustrate the application of this model and this method, a particular type of phytopathological
images are analyzed. These images show callose depositions in leaves of Arabidopsis plants. The analysis of
callose depositions, is very popular in the phytopathological literature to quantify activity of plant immunity.

Keywords: binary images, callose deposition, mixed volumes, non-homogeneous Boolean model, parameter
estimation.

INTRODUCTION

In a wide variety of technological and scientific
fields there are many practical situations in which
researchers need to manage image data in order to
obtain conclusions about a phenomenon of interest.
Very often, these images are binary images showing
the area covered by a given phenomenon in a certain
region. A very appropriate probabilistic model for
studying this kind of images, where the area covered
by different events usually overlaps (random clumps),
is the Boolean model (Molchanov, 1997; Chiu et
al., 2013). This model is formed by placing random
compact sets on the points of a Poisson point process
and considering the union of these sets. Difficulties
arise when certain grains overlap or remain completely
covered by the others, thus making it impossible to
perform direct measurements of the characteristics of
the particles.

A formal definition of a Boolean model is as
follows.

Definition 1 (Boolean model) Let Φλ = {x1,x2, . . .}
be a stationary Poisson point process in IRd of intensity
λ . Let Ξ1,Ξ2, . . . be a sequence of independent
identically distributed random compact sets in IRd that
are independent of the Poisson process Φλ and satisfy
Eνd(Ξ0⊕ Ǩ) < +∞ for all compacts K ⊂ IRd , where

Ξ0 is a random compact set of the same distribution as
Ξn, Ǩ = {−x : x ∈ K} and νd is the d− dimensional
Lebesgue measure. The Boolean model Ξ is then
defined as:

Ξ =
⋃

i

(xi +Ξi) . (1)

The points xi are called germs, the sets Ξi are
known as grains and the random set Ξ0 is said to be
the typical grain of the Boolean model. The value of
parameter λ is said to be the intensity of the Boolean
model.

If the grains have an isotropic distribution
(distribution that is invariant under rotations about the
origin), then the Boolean model is also isotropic in
distribution.

A more in-depth study of this model can be
found in Serra (1982), Ayala (1988), Cressie (1993),
Molchanov (1997) and Chiu et al. (2013). Applications
of Boolean models to real images have been worked by
Lyman (1972), Margalef (1974), Serra (1982), Plaza
(1991) and Chiu et al. (2013), among others.

The assumptions of stationarity and isotropy in
Def. 1 facilitate the estimation of the parameters
of the Boolean model. However, the hypothesis of
spatial homogeneity frequently fails when real data
sets are analyzed. Methods to estimate parameters of
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non-homogeneous Boolean models have been studied
by Molchanov and Chiu (2000) and by Schmitt
(1996). Non-homogeneous Boolean models have been
used for the functional modeling of graded materials
(Quintanilla and Torquato, 1997; Hahn et al., 1999),
distributions of galaxies (Bond et al., 1995) and
complex fluids (Brodatzki and Mecke, 2001).

Our aim in this paper is to propose an alternative
statistical method to estimate the parameters of interest
of a particular type of non-homogeneous Boolean
model. This particular model can be applied to a great
variety of practical situations. As an example, we will
show its application to a phytopathological problem.
Our method is similar in some respects to that of
Berman and Turner (1992) for inhomogeneous point
processes.

In this application, we will work with microscopic
images obtained in the study of callose deposition
in leaves of Arabidopsis plants (Luna et al., 2011).
The study of callose deposition is a very popular
method in the phytopathological literature to quantify
plant immune system activity. Callose deposition in
a leaf form random clumps, which are more densely
distributed near the nerves of the leaf. So in this
case, we can consider this deposition as a realization
of a non-homogeneous Boolean model where the
intensity of the Poisson point process is modeled as
a known function of the distance from each point to
the closest leaf nerve. As a result, a particular non-
homogeneous Boolean model can be assumed. As an
alternative to the method proposed by Schmitt (1996)
and Molchanov and Chiu (2000), we propose, for this
model, a parameter estimation method based on a least
squares fit procedure applied to the area fraction and to
the density of the boundary length functions.

The rest of the paper is organized as follows:
first the definition of non-homogeneous Boolean
model will be introduced. A particular case of this
model will be detailed in the following section. Then
the parameter estimation procedures proposed by
Molchanov and Schmitt will be explained, together
with a new estimation procedure that will be proposed.
Next a simulation study will be carried out to test
the performance of the different parameter estimation
procedures. In the subsequent section the proposed
method is applied to a very popular data set. This data
set is included in the R package spatstat and provides
the locations and diameters of adult longleaf pines in
a region. In this data set the germ process is known,
so we can compare our results with those obtained
using point process methods. Then this method will be
applied to analyze microscopic images obtained in the
study of callose deposition in plant leaves (Luna et al.,
2011). Finally, conclusions will be stated.

NON-HOMOGENEOUS BOOLEAN
MODEL

The assumption of stationarity in the definition
of the Boolean model (Def. 1), means that the
phenomenon being studied spreads over the plane in
a homogeneous way. As has been stated previously,
in practice this hypothesis usually fails, but it is
still assumed as it facilitates the parameter estimation
process.

In many real situations, where this hypothesis is
not acceptable at all, a suitable model is the non-
homogeneous Boolean model. A non-homogeneous
Boolean model (Molchanov, 1997; Chiu et al., 2013)
is a Boolean model whose germ process is a non-
homogeneous Poisson point process that is obtained
substituting the constant intensity of the homogeneous
Poisson process by a general intensity measure Λ(B),
for B ⊂ IRd . Usually Λ(B) =

∫
B λ (x)dx. The density

λ (x), that is, finite and non-negative, is called the
intensity function of the general Poisson point process.
The formal definition of a non-homogeneous Boolean
model is as follows.

Definition 2 (Non-homogeneous Boolean model)
Let Φλ = {x1,x2, . . .} be a non-homogeneous Poisson
process in Rd with intensity function λ (x). Let
Ξ1,Ξ2, . . . be a sequence of independent identically
distributed random compact sets in IRd that are
independent of the Poisson process Φλ and satisfy
Eνd(Ξ0 ⊕ Ǩ) < +∞ for all compacts K, where Ξ0
is a random compact set of the same distribution as
Ξn, and νd is the d− dimensional Lebesgue measure.
The non-homogeneous Boolean model (NHBM) Ξ is
Ξ =

⋃
i(xi +Ξi).

The points xi are called germs, the sets Ξi are
known as grains and the random set Ξ0 is referred
to as the typical grain. A non-homogeneous Boolean
model is characterized by its intensity function and the
probability distribution of its typical grain. From now
on, we will continue working on R2 i.e., fixing d = 2.

Given a NHBM (Def. 2), its probability
distribution is characterized by its capacity functional,
which, for each compact set K, is defined as:

TΞ(K) = P(Ξ
⋂

K 6= /0)

= 1− exp[−E{Λ(K⊕ Ξ̌0)}] , (2)

where Ξ̌0 = {−x : x ∈ Ξ0}.
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The capacity functional for K = {x}, p(x) =
TΞ({x}) is defined as the volume fraction function,
in general, or as the area fraction function in the
particular case of d = 2. Therefore, by Eq. 2,

p(x) = P(x ∈ Ξ) = 1− exp[−E{Λ(x⊕ Ξ̌0)}] ,

and by Fubini’s theorem:

p(x) = 1− exp [−E{
∫

Ξ̌

λ (x− y)dy}] . (3)

The area fraction function is a particular case
of the extended intrinsic volume densities V̄j(Ξ;x)
j = 0,1,2 of the Boolean model Ξ. p(x) = V̄2(Ξ;x).
Another interesting extended intrinsic volume density
is V̄1(Ξ;x) the density function of the boundary length,
denoted by LA(x). The density of the boundary length
of a NHMB at point x is (Weil, 2001):

LA(x) = (1− p(x))E{
∫
R2

λ (x− y)Φ1(Ξ,dy)} , (4)

where Φ1(Ξ,dy) denotes the generalized curvature
measure of Ξ (Schneider and Weil, 2008). 2Φ1(Ξ,B)
is defined as the length of ∂Ξ

⋂
B, where ∂Ξ denotes

the boundary of Ξ and B⊂ IR2 is a Borel set.

Non-homogeneous Boolean models with spherical
grains in R2 and R3 have interesting applications
in statistical physics, in particular for continuous
percolation problems.

Estimators of the area fraction function and
the density of the boundary length can be found
in Molchanov (1997). We have to note that the
measurement of the density of the boundary length is
not very easy to implement on the digitized computer.

A PARTICULAR CASE OF NON-
HOMOGENEOUS BOOLEAN
MODEL

Departure from the homogeneity hypothesis can be
due to a large number of different causes. In particular,
in this paper we are going to focus our interest on
one of the most common causes in practice: the case
where the phenomenon of interest is spread over the
plane non-homogeneously, depending on the distance
to a certain focus or region of interest, ROI. Examples
include proliferation of houses and/or industries close
to main roads in a country; plants affected by a virus
around the outbreak of the disease; radioactivity levels
or cases of illness around a power plant, a nuclear
plant or particular industries; destruction around the

epicenter of an earthquake, and so on. In particular,
in the example that we will analyze later, we will
work with microscopic images of leaves, where callose
deposition is non-homogeneously distributed across
their surface, showing an intensity of events that
depends on the proximity to the nerves of the leaves.

In order to take advantage of prior knowledge on
the characteristics of the non-homogeneity, we suggest
considering a particular NHBM with:

– A parametric intensity function λ (x) =
f (DROI(x);a), where f is a known function
depending on a = (a1, . . . ,ap), the parameters to
estimate, DROI(x) is the distance from point x to
the region of interest, ROI, and f (DROI(x);a) ≥ 0
∀x ∈ R2.

– A parametric grain distribution. We assume that
the typical grain is a ball with a random radius
whose probability distribution is known except for
some parameters. i.e., Ξ0 = B(0,r), where B(0,r)
denotes the ball centered in the origin and radius
r and r has the probability density g(r;θ), with
θ = (θ1, . . . ,θk).

Under these conditions, the area fraction function
(Eq. 3) and the density of the boundary length (Eq. 4)
become (Weil, 2001):

p(x) = 1−

exp
[
−
∫∫

B(x,r)
f (DROI(y);a)g(r;θ)dydr

]
,

(5)
LA(x) = (1− p(x)) ·(∫

R2
f (DROI(x− y);a)g(‖y‖;θ)dy

)
. (6)

As an illustration, Fig. 1 shows realizations of
a NHBM where it is assumed that the intensity of
the underlying Poisson point process depends on
the distance to a single point (Fig. 1a); two points
(Fig. 1b); a line (Fig. 1c) a pair of lines (Fig. 1d). In
all these realizations we assume a fixed value for the
radius, r = 5, and an exponential decay for the intensity
function. In particular, it is assumed that λ (x) =
0.01exp{−0.05DROI(x)}. Fig. 2 shows realizations of
a NHBM with the same intensity functions as those
seen in Fig. 1, but assuming a uniform probability
distribution in [0,10] for the radius.
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(a) (b)

(c) (d)

Fig. 1. Realizations of an NHBM with a fixed radius
and intensity function depending on the distance to (a)
a single point (marked in red), (b) a pair of points(in
red), (c) a single line (in red), (d) a pair of lines (in
red).

(a) (b)

(c) (d)

Fig. 2. Realizations of an NHBM with a uniform radius
distribution and intensity function depending on the
distance to (a) a single point, (b) a couple of points,
(c) a single line, (d) a pair of lines.

PARAMETER ESTIMATION IN
NON-HOMOGENEOUS BOOLEAN
MODELS

Molchanov and Chiu (2000) and Schmitt
(1996) developed different methods to estimate
the parameters of both homogeneous and non-
homogeneous Boolean models. In this section, we will
review the methods proposed for NHBM, and we will
also propose an alternative estimation method for the
particular case of NHBM introduced in the previous.

MOLCHANOV METHOD

Let Ξ be a non-stationary Boolean model, with
germ process Φλ and intensity function λ (x), and let
the typical grain Ξ0, be a closed convex set.

Let us fix a direction u in R2 and define the tangent
point of each grain Ξi as the lexicographical minimum
among all points at which a hyperplane orthogonal to
u and moving in the direction of u first touches Ξi
(Molchanov and Stoyan, 1994). Then, the observable
tangent points form a point process, Ψ, of intensity
function µ(x) (Molchanov and Chiu, 2000), and it is
proved that if the area fraction function of the original
Boolean model p(x) is known or can be estimated,
then:

λ (x) = µ(x)/{1− p(x)} . (7)

As Ψ is non-stationary, the density of its intensity
measure, µ(x), can be estimated by kernel methods
(Bowman and Azzalini, 1997). If k is a kernel and h
is a bandwidth, then µ is estimated by

µ̂(x) = ∑
xi∈Ψ

k{(x− xi)/h} .

If necessary, the area fraction function can also be
estimated by a nonparametric regression estimator as:

p̂(x) =

∫
Ξ
⋂

W k1{(y− x)/h1}dy∫
W k1{(y− x)/h1}dy

, (8)

where W ⊂R2 is an observation window; k1 is another
kernel and h1 is another bandwidth, which may be
the same as the kernel k and the bandwidth h used to
estimate µ̂(x), or may differ.

Another version of this method (Molchanov and
Chiu, 2000) also allows us to estimate the parameters
of the probability distribution of the typical grain. We
have not used it due to its excessive computational
cost.

SCHMITT METHOD

This method, suggested by Schmitt (1996) for the
non-stationary case, can be applied to Boolean models
with primary grains almost surely bounded by a square
of edge length r.

It makes it possible to estimate the mean of the
non-stationary intensity inside a square of arbitrary
size ε , as:

∫
[0,ε]2

λ (x)dx = log
(1−TΞ(G))(1−TΞ(G∪K∪L))
(1−TΞ(G∪L))(1−TΞ(G∪K))

,

∀ε > 0, (9)

30



Image Anal Stereol 2015;34:27-38

where sets G, L and K must be chosen in a special way.
In his paper, Schmitt proposed to definee the sets as
shown in Fig. 3.

Fig. 3. The sets used in the definition of Schmitt’s
estimator.

LEAST SQUARES ON INTRINSIC
VOLUME DENSITIES (LSIVD) METHOD

Molchanov et al. and Schmitt, propose methods
to estimate the parameters of the intensity function
of a NHBM, in general, without assuming any
knowledge about the causes of non-homogeneity.
But if we could have any knowledge about theses
causes, i.e., if we could have additional information
about the characteristics of the intensity function, it
would seem more appropriate to use such information
in the estimation process in order to reduce the
computational complexity and obtain estimates as
accurate as those obtained by other more general
methods. This is the main aim of the method
proposed in this section, to use prior knowledge about
the functional form of λ (x) in order to estimate
its parameters using a conceptually less demanding
algorithm.

The outline of the algorithm is as follows:

1. To estimate the area fraction function, p̂(x), and
the density of the boundary length L̂A(x), for a grid
of x-values in W by using a kernel estimator, as in
Eq. 8.

2. Following Eqs. 5, 6, use numerical methods to
approximate:

Q1(x,a,θ) =
∫∫

B(x,r)
f (DROI(y);a)g(r;θ)dydr ,

Q2(x,a,θ) =
∫
R2

f (DROI(x− y);a)g(‖y‖;θ)dy ,

(10)

which will be possible if f (DROI(x);a) has a
simple functional form.

3. To estimate the parameters a = (a1, . . . ,ap) and
θ = (θ1, . . . ,θk), by least squares, minimizing

Q(a,θ) = ∑
xi∈W

[
1

(n−1)S2
Q̂1

(ln(1− p̂(xi))− (−Q1(xi,a,θ)))2+

(11)

+
1

(n−1)S2
Q̂2

(
L̂A(xi)

1− p̂(xi)
−Q2(xi,a,θ))2

]
,

where {xi : xi ∈ W, i = 1, ...,n} is a digital grid,
Q̂1(x) = ln(1− p̂(x)), Q̂2(x) = L̂A(x)/(1− p̂(x))
and S2

Q̂1
, S2

Q̂2
are their respective sample variances.

In our applications, we have used well-known
numerical methods to approximate the integrals
(Eq. 10) and to minimize the function given in
Eq. 11. In particular, the trapezoidal rule has been
used to approximate the integrals (Eq. 10), and
the fmincon function of the Matlab optimization
toolbox has been used to solve the optimization
problem (Eq. 11). The purpose of fmincon is to
find a constrained minimum of a scalar function
of several variables starting at an initial estimate.
It uses a sequential quadratic programming method,
solving a quadratic programming (QP) sub-problem
at each iteration. At each iteration, an estimate of
the Hessian of the Lagrangian is updated using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula
(Fletcher and Powell, 1963; Goldfarb, 1970); a line
search is performed using a merit function similar
to that proposed by Han (1977); Powell (1978a;b),
and the QP subproblem is solved using an active
set strategy similar to that described in (Gill et al.,
1981). Researchers more expert than us in this field,
will surely find numerical methods that provide better
results, but our aim has simply been to show the
method.

At this point we would like to point out that we are
just concerned with a particular type of λ (x) functions,
whose functional form has been stated before. This
type of intensity function is quite common in real
applications, although functions f and/or g could be
unknown. If f and/or g were unknown a reasonable
approximation could be considered; for example, f
could be modeled as a linear or exponential function
and g could be considered as a normal or uniform
density function.

In some cases, when the analytical expression
of functions Q1 and Q2 are known, the numerical
integration step of the algorithm can be omitted. Even
in some cases, the optimization can also be obtained
analytically. Let us see an example.
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Example 1 Let us consider a particular case of
NHBM (Def. 2) with λ (x) = a1 + a2DROI(x), being
a = (a1,a2) constants to estimate. The radius of the
ball, r, is considered fixed but unknown, and the region
of interest is a line. In this case:

Q1(x,a,r) =
∫

B(x,r)
a1 +a2DROI(y)dy ,

Q2(x,a,r) =
∫ 2π

0
r(a1

+a2DROI(x− (r cos(θ),r sin(θ))))dθ ,

and using the mean value theorem in both equations:

Q1(x,a,r) = πr2(a1 +a2DROI(x)) ,
Q2(x,a,r) = 2πr(a1 +a2DROI(x)) .

Thus it is not necessary to use any numerical
optimization algorithm to obtain â1, â2 and r̂. Using
elemental calculus, similar to those used to obtain
de minimum least squared line, the values of the
parameters to minimize Eq. 11 will be:

r̂ = ∆+

√√√√∆2 +4
S2

Q̂1

S2
Q̂2

,

â1 =
r̂SDQ̂1

S2
Q̂2

+2SDQ̂2
S2

Q̂1

π r̂(r̂2S2
Q̂2

+4S2
Q̂1
)S2

D
,

â2 =
S2

D(r̂Q̂1S2
Q̂2

+2Q̂2)S2
Q̂1
−D(r̂SDQ̂1

S2
Q̂2

+2SDQ̂2
S2

Q̂1
)

π r̂(r̂2S2
Q̂2

+4S2
Q̂1
)S2

D
.

Being Q̂1 and Q̂2 the means of ln(1 − p̂(x)) and
L̂A(x)/(1− p̂(x)) respectively; D, and S2

D, the mean
and the variance of DROI(x); S f g = (∑i( f (xi) −
f̄ )(g(xi)− ḡ))/n and

∆ =
S2

DQ̂1
S2

Q̂2
−S2

DQ̂2
S2

Q̂1
+nS2

D(Q̂
2

1S2
Q̂2
− Q̂

2

2S2
Q̂1
)

S2
Q̂2
(SDQ̂1

SDQ̂2
+nS2

DQ̂1Q̂2)
.

SIMULATION STUDY

In this section, a simulation study is carried out to
test the performance of the three estimation procedures
explained previously.

Three different experiments are performed. For
each one, 20 realizations of the particular non-
homogeneous Boolean model introduced before are
simulated on a 512 × 512 window. Regarding the
model:

– The typical grain is assumed to be a ball, i.e.,
Ξ0 = B(0,r).

– Two different intensity functions are considered:

λ (x) = a1 +a2DROI(x)

and

λ (x) = a1 exp{a2DROI(x)} ,

a1 and a2 being the parameters to estimate, and
DROI(x) the distance from point x to the region of
interest.

– Two types of regions of interest, will also be
considered in each experiment: a line, and two
different lines.

Fig. 1 shows realizations of some of
these particular NHBMs assuming that λ (x) =
0.01exp{−0.05DROI(x)} and that DROI(x) represents
the distance to a line (Fig. 1 (c)) and to two crossing
lines (Fig. 1 (d)).

Results obtained using Molchanov’s, Schmitt’s
and LSIVD methods will be compared.

Regarding our method:

– An Epanechnikov kernel with a bandwidth of h =
70 has been used to estimate the area fraction
function and the density of the boundary length
(Eq. 8).

– As stated below, the trapezoidal rule has been used
to approximate Qi(x,a,θ), i = 1,2 (Eq. 10), and
the fmincon function of the Matlab optimization
toolbox has been used to minimize the function
stated in Eq. 11.

For smoothing purposes, in the method of Molchanov
and Chiu (2000), the Epanechnikov kernel with a
bandwidth h of 70 has also been used to estimate the
area fraction function (Eq. 8).

To perform Schmitt’s method it is necessary to
choose a value for the tuning parameter ε , which
is related to the radius of the grain process. As the
distribution of the radius is known in our simulations,
we will detail in each case, the ε value used.

All the algorithms have been implemented in
Matlab 1.

1MATLAB is a trademark of The MathWorks Inc.
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FIRST EXPERIMENT

In this first experiment we obtain 20 simulations
of a non-homogeneous Boolean model with
intensity function λ (x) = a + bD(x). Two different
combinations of a, b and r values are considered for
image simulation: a = 1e-5, b = 2e-5 (where e-5
denotes ×10−5) and two different r-values: r = 5 and
r = 10. To choose these values, it should be taken into
account that not every combination is valid. There will
be combinations that could lead to images without any
interest, for being either completely covered, or almost
empty. For this reason they have been chosen ad hoc,
after visualizing the simulated images. To perform
Schmitt’s method, ε = r+2 has been used.

Once obtained the images, parameters a, b and r
are estimated from them with the different methods
exposed in the paper. Results of this first experiment
can be found in Table 1.

SECOND EXPERIMENT

Let’s consider an exponential expression for the
intensity function, i.e., λ (x) = aexp{−bDROI(x)}with
a and b being the constants to estimate. The radius of
the ball, r, is considered fixed but unknown.

Once again, parameters are chosen following the
criteria explained in the first experiment. To perform
Schmitt’s method, ε = r+2 has been used.

The results are shown in Table 2.

THIRD EXPERIMENT

Let’s consider an exponential expression for the
intensity function, i.e., λ (x) = aexp{−bDROI(x)},
with a and b being the constants to estimate, and let
r follow a uniform distribution on [0,R].

Once again, parameters are chosen in the same way
as in the previous cases. To perform Schmitt’s method,
ε = R+2 has been used.

The results are shown in Table 3.

COMMENTS ON THE RESULTS

The main advantage of LSIVD method is its ability
to estimate r (or R), in addition to the parameters of
the intensity function, a and b, with a very simple
algorithm. As can be seen in Tables 1, 2 and 3,
the three methods provide quite similar estimations,
although subtle differences can be found between
them. Molchanov’s method is the one that usually
provides less accurate estimations, while LSIVD
method is the one that usually presents the lowest
variability in the estimations obtained. It is Schmitt’s

method that achieves the most accurate estimations in
the highest number of cases.

It must also be noted that parameter r (respectively
R), is the parameter most efficiently estimated,
although it tends to be slightly overestimated.

Note that the performance of LSIVD method is
usually somewhat worse than Schmitt’s, but Schmitt’s
method cannot estimate the value of r. Additionally,
in real applications the value of the tuning parameter
ε is unknown and its estimation could affect the
performance of the method. There is a modified
version of Molchanov’s algorithm that makes it
possible to estimate r together with the parameters of
the intensity function, however, Molchanov provides a
bit worse estimations than LSIVD method.

When analyzing the results, the difficulty of
working with digital images should be kept in mind.
For example, our circles are circles in a digital grid
and it is therefore difficult to obtain a precise measure
of their boundary length or their area. In our opinion,
this may be causing the bias in the observed estimates.
Our method could be improved with better digital
measurements for the length of the curves and the
area and with more accurate numerical methods for
approaching the integrals and the optimization. In the
present study, the Matlab function edge has been used
to get the boundaries, and the number of pixels of these
boundaries has been used to measure the lengths. The
area has been also measured counting the number of
pixels.

ANALYZING LONGLEAF PINES
DATA SET

spatstat (Baddeley and Turner, 2005) is a popular
R-package for analyzing bidimensional point patterns,
which includes some standard point pattern data sets.
Among these standard data sets we can find the
Longleaf Pines data set (Platt et al., 1988; Rathbun
and Cressie, 1994), which is available as longleaf. The
longleaf data set provides the location and diameters
at breast height (dbh, a convenient measure of their
size) of 584 Longleaf Pine (Pinus palustris) trees in
a 200 m× 200 m region in southern Georgia (USA).
This data set represents a marked point pattern and it
has been largely analyzed as an example of spatially
inhomogeneous point pattern (Baddeley et al., 2000;
Perry and Enright, 2006). Like Baddeley et al. (2000)
and Perry and Enright (2006), we have considered only
‘adult’ trees, which are conventionally defined as those
with a dbh greater than or equal to 30 cm (Platt et al.,
1988).
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Table 1. Mean and standard deviation of the estimates of the parameters a, b, and r of the non-homogeneous
Boolean model set in the first experiment.

Schmitt method Molchanov method LSIVD Method
True value ROI mean sd mean sd mean sd
a = 1.00e-5 68.00e-5 77.00e-5 16.00e-5 13.00e-5 1.00e-5 5.73e-42
b = 2.00e-5 Line 421.00e-5 1676.00e-5 0.000002e-5 0.0000009e-5 2.10e-5 1.14e-41
r = 5.00 5.10 0.32
a = 1.00e-5 15.00e-5 93e-5 11.00e-5 12.00e-5 1.02e-5 0.00000000489e-5
b = 4.00e-5 Two lines 0.00006e-5 0.006e-5 1.80e-5 0.59e−6 4.11e-5 0.0000000783e-5
r = 5.00 5 0
a = 1.00e-5 0.00003e-5 0.00002e-5 45.00e-5 19.00e-5 8.60e-5 9.80e-5
b = 2.00e-5 Line 6.60e-5 0.30e-5 0.072e-5 0.23e-5 2.00e-5 0.08e-5
r = 10.00 10.10 0.32
a = 1.00e-5 15.00e-5 12.00e-5 52.00e-5 95.00e-5 0.830e-5 0.000000907e-5
b = 4.00e-5 Two lines 0.83e-5 1.90e-5 1.10e-5 0.19e-5 4.00e-5 0.002e-5
r = 10.00 10 0

Table 2. Mean and standard deviation of the estimates of the parameters a, b, and r of the non-homogeneous
Boolean model set in the second experiment.

Schmitt method Molchanov method LSIVD Method
True value ROI mean sd mean sd mean sd
a = 1.00e-2 1.02e-2 1.55e-2 0.40e-2 0.05e-2 0.53e-2 0.04e-2
b = 5.00e-2 Line 7.13e-2 15.21e-2 2.61e-2 0.22e-2 2.35e-2 0.14e-2
r = 5.00 5.80 0.63
a = 1.00e-2 1.72e-2 2.07e-2 0.36e-2 0.03e-2 0.54e-2 0.02e-2
b = 5.00e-2 Two lines 8.69e-2 18.41e-2 1.98e-2 0.21e-2 2.18e-2 0.05e-2
r = 5.00 5.80 0.63
a = 1.00e-2 1.05e-2 1.10e-2 0.25e-2 0.07e-2 0.48e-2 0.53e-2
b = 5.00e-2 Line 6.43e-2 13.59e-2 2.41e-2 0.41e-2 4.23e-2 1.24e-2
r = 10.00 10.30 0.48
a = 1.00e-2 8.28e-2 2.21e-2 0.21e-2 0.05e-2 0.50e-2 0.04e-2
b = 5.00e-2 Two lines 5.85e-2 1.69e-2 1.60e-2 0.47e-2 4.74e-2 0.83e-2
r = 10.00 10.10 0.31

From this data set we are going to use our method
to estimate the parameters of the NHBM formed by
the germ process of the locations of the trees and
grain process of balls with a radius proportional to
their respective diameters. It should be noted that it
is not frequent to know the locations of trees in a
forest because this is an expensive and hard task. Let us
imagine that just an aerial photograph of this area was
available for the study, then our sample information
would be just a digital image showing the area covered
by the trees. Assuming that the diameter of the crown
of the tree is proportional to its diameter at breast
height, the information available usually in this kind
of problem is a binary image like the one shown in
Fig. 4b.

Looking at Fig. 4b we can see that the area
covered by trees is clearly growing from right to left
in the region, so we can try to adjust the data to a
non-homogeneous Boolean model assuming that the
intensity at a point x = (x1,x2), is a function of the
distance from x to the x2-axis. An exponential function
is assumed, i.e., λ (x) = aexp{−bD(x)}. With respect

to the radius distribution we are going to assume
the most simple one, a uniform distribution in [30,r].
Therefore, we have three parameters to estimate: a, b
and r.

Applying the method explained in section 4.3, the
estimates obtained are: â = 0.003, b̂ = −0.0062 and
r̂ = 65.
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(a) (b)

Fig. 4. (a) Position of 271 adult pine trees in a
forest (longleaf dataset from the spatstat package). (b)
Binary image showing the area covered by the pine
trees assuming that the diameter of the crown of the
trees is proportional to their diameter at breast height.
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Table 3. Mean and standard deviation of the estimates of parameters a, b, and R of the non-homogeneous Boolean
model set in the third experiment.

Schmitt method Molchanov method LSIVD method
True value ROI mean sd mean sd mean sd
a = 1.00e-2 0.47e-2 0.38e-2 0.51e-2 0.05e-2 0.55e-2 0.07e-2
b = 5.00e-2 Line 3.02e-2 1.20e-2 2.67e-2 0.17e-2 2.30e-2 0.08e-2
R = 5 6.27 0.81
a = 1.00e-2 0.67e-2 0.51e-2 0.50e-2 0.04e-2 0.57e-2 0.03e-2
b = 5.00e-2 Two lines 5.52e-2 13.41e-2 2.13e-2 0.16e-2 2.16e-2 0.05e-2
R = 5 6.19 0.22
a = 1.00e-2 1.13e-2 1.64e-2 0.41e-2 0.06e-2 0.36e-2 0.08e-2
b = 5.00e-2 Line 7.39e-2 11.32e-2 2.66e-2 0.25e-2 2.37e-2 0.08e-2
R = 10 13.28 2.11
a = 1.00e-2 5.96e-2 3.73e-2 0.31e-2 0.37e-2 0.35e-2 0.14e-2
b = 5.00e-2 Two lines 7.53e-2 13.43e-2 2.02e-2 0.26e-2 2.01e-2 0.71e-2
R = 10 11.33 4.43

We are going to use this “artificial” example to
illustrate the performance of our proposed method.
In this case, the germ point process locations are
known (see Fig. 4a) and this allows us to estimate their
intensity function using the point processes methods
implemented in the spatstat package. Therefore, we
can compare it with the one obtained using our method
applied to Fig. 4b. This comparison can be seen in
Fig. 5. The results are quite promising taking into
account the difference in the information available in
each case. Fig. 6 shows a couple of simulations of the
fitted model for the image in Fig. 4b.

density.ppp(longadult, eps = 1)
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Fig. 5. (a) Estimated density function obtained using
point processes methods applied to Fig. 4a,b estimated
density function obtained using our method applied to
Fig. 4b.

Fig. 6. Simulations of the non-homogeneous Boolean
model fitted to the image of Fig. 4b.

GOODNESS OF FIT TEST
Once the parameters of the model have been

estimated, it is necessary to check the adequacy of
the model proposed, for modeling our data set. To this
end, a Monte Carlo test of goodness of fit (Besag and
Diggle, 1977; Diggle, 1983) is carried out.

We simulate 99 realizations of the model with
the parameters estimated. In order to describe the
realizations, Kinhom, a generalization of the Ripley’s
K-function for second-order intensity-reweighted
stationary germ-grain models has been chosen
(Gallego et al., 2014):

Kinhom(t) =
1
|W |

E
(∫

Ξ∩W

∫
Ξ∩B(y,t)

1
p(x)p(y)

dydx
)
.

(12)
Let K̂inhom0 and K̂inhomi (i = 1, · · · ,99) be the

estimates of the Kinhom-function from the real image
and the simulations. Fig. 7 shows the function
estimated from the real data, K̂inhom0 , and the lower
and upper envelopes of K̂inhomi estimated from the
simulations. This indicates a satisfactory fit because
K̂inhom0 lies between the two envelopes except for a few
values.

Following Diggle (1983), we consider:

Di =

(∫ t0

0

(
K̂inhomi(t)− K̄inhomi(t)

)2 dt
)1/2

,

i = 0, ...,99 ,

where K̄inhomi = ∑ j 6=i K̂inhom j/99.

Let r0 be the rank of D0. For r0 > 50 the Monte
Carlo p-value is 2(100− r0)/100. Meanwhile for r0 ≤
50 it is 2(r0/100). The p-value obtained was 0.383,
so we can assume that the distribution of the pines
is an non-homogeneous Boolean model with intensity
function and the distribution of radios introduced
above.

35



GALLEGO MA ET AL: Parameter estimation in NH-Boolean models

Fig. 7. Lower and upper envelopes of K̂inhom estimates
from the simulations and the estimated from the real
data.

APPLICATION

In this section, we show how the NHBMs and
our parameter estimation method can be applied
to a phytopathological problem. As an illustration,
we are going to analyze just one of the images
obtained in an experimental study conducted by
a group of researches from the Plant Physiology
Section of Universitat Jaume I. The goal of their
experimental study was to examine the robustness of
callose deposition in response to different pathogen-
associated molecular patterns (Luna et al., 2011). As a
result of the experiment, they obtained epifluorescence
microscopic images with a UV filter, of size 1536×
1920 pixels. As a preprocessing step, one of these
colored images is selected and segmented into two
binary images, one showing the nerves of the leaf and
the other showing the callose deposition (Fig. 8). This
second image shows small overlapping circular white
spots. Mathematical morphological tools have been
used to segment and convert the original image into
binary images.

As can be seen in Fig. 8, callose deposition is
mainly located close to the leaf nerves, presents a
roughly circular shape and overlaps. That is why
we propose to model their distribution with a non-
homogeneous Boolean model, assuming that the
intensity at a point x, is a negative exponential function
of the distance from x to the closest nerve or to the
edge of the leaf, i.e., λ (x) = aexp{−bD(x)}, with
D(X) defined as the minimum between the Euclidean
distance from a location x to its nearest nerve and to
the edge of the leaf. With this intensity function, there

will only be two parameters to estimate: a and b. If
we additionally assume that the grains are balls of a
fixed unknown radius r, a third parameter must also be
estimated.

In the parameter estimation step, the algorithm
previously detailed is followed. In order to estimate
the area fraction (step 1) the Epanechnikov kernel is
used with band bandwidth h = 80. In step 3, as in
our simulation study, the trapezoidal rule is used to
approximate the integral and the fmincon function
of the Matlab optimization toolbox has been used to
solve the optimization problem.

The results obtained were â = 0.005, b̂ = 1.5 and
r̂ = 2 pixels.

(a) (b)

(c) (d)

Fig. 8. (a) Original image. (b) Binary image showing
the nerves of (a). (c) Callose deposition image of (a).
(d) A simulation of the estimated model for the callose
deposition image (c).

GOODNESS OF FIT TEST
Once we have estimated the parameters of the

model, we need to check, once more, that this model
that we assumed is appropriate for our data. For this
purpose, we carry out again a Monte Carlo test of
goodness of fit (Besag and Diggle, 1977; Diggle,
1983).

We simulate 99 realizations of the model with
the parameters estimated. One of these simulations
can be seen in Fig. 8d. In order to describe the
realizations we have chosen a generalization of
the Ripley’s K-function for second-order intensity-
reweighted stationary germ-grain models (Gallego et
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al., 2014).

Kinhom(t) =
1
|W |

E
(∫

Ξ∩W

∫
Ξ∩B(y,t)

1
p(x)p(y)

dydx
)
.

(13)
Let K̂inhom0 and K̂inhomi (i = 1, · · · ,99) be the

estimates of the Kinhom-function from the real image
and the simulations. Fig. 9 shows the function
estimated from the real data, K̂inhom0 , and the lower
and upper envelopes of K̂inhomi estimated from the
simulations. This indicates a satisfactory fit because
K̂inhom0 lies between the two envelopes except for a few
values.

Monte Carlo method is applied, getting a p-value
of 0.68, which leads us to accept the null hypothesis
formulated about the random distribution of callose
deposition on leaves.

Fig. 9. Lower and upper envelopes of K̂inhom estimates
from the simulations and the estimated from the real
data.

CONCLUSIONS

In this paper we have proposed a simple statistical
method that can be used to estimate the parameters
of a particular kind of non-homogeneous Boolean
model. In this model a particular functional form for
the intensity function of the underlying process can
be assumed. The method is based on applying least
squared fitting to the area fraction function and the
density of the boundary length. We have shown that
it provides estimators as accurate as those obtained
with other more complex methods for the general case.
As an illustration, this model and the method have
been used to analyze microscopical images from a
phytopathological application. They can be used to

analyze images with similar characteristics in other
scientific fields.
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