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ABSTRACT

This paper presents a color image segmentation method for the quantification of viable cells from samples
obtained after cytocentrifugation process and May Grunwald Giemsa (MGG) coloration and then observed
by optical microscopy. The method is based on color multi-thresholding and mathematical morphology
processing using color information on human visual system based models such as CIELAB model, LUX
(Logarithmic hUe eXtension) model and CoLIP (Color Logarithmic Image Processing) model, a new human
color vision based model also presented in this article. The results show that the CoLIP model, developed
following each step of the human visual color perception, is particularly well adapted for this type of images.
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INTRODUCTION

Classic histotechnology methods (e.g.
cytocentrifugation) are widely used in clinical
medicine and biological research (De Brauwer et al.,
2000) and lead to cell observations with morphological
considerations. An important aspect is based on the
cellular viability and morphological features usually
highlighted by colorations such as May Grunwald
Giemsa (MGG). The quantification of cells and more
particularly viable cells is a determinant parameter
in cytology preparations. Generally, in histology
laboratories, after cell preparation and coloration, a
manual determination of the viability percentage is
performed by numbering each dead cell which is time-
consuming and leads to potential errors. We describe in
this work an image processing algorithm dedicated to
the cells numeration and classification for applications
after cytocentrifugation and MGG staining.

The MGG coloration produces samples with
purple colored cell nuclei and blue colored cytoplasm
(see Fig. 1 typical MGG images). This coloration
allows the human eye to differentiate living cells
(circularly shaped and composed of a nucleus and a
cytoplasm) and dead cells (composed of a scattered
nuclei, usually brighter than living cell nuclei) better
than on gray level sample. The color information
is then useful to the human eye to cell detection.
Usually, cell image extraction algorithms are based
on the image segmentation of an achromatic channel,
obtained by combination of the color channels. This
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type of image segmentation gives relatively good
results but ignores the chromatic part of information
used by the human visual system. In order to
improve the segmentation, particularly the particles
disconnection, it is necessary to add chromatic
information to the achromatic information. Lezoray
et al. have been working on such cytological images
color segmentation and cells classification methods.
Their segmentation methods are based on watershed,
clustering, and mathematical morphology (Lezoray
et al., 1999; Lezoray, 2003; Lezoray and Lecluse,
2007), and are most of the time based on classical RGB
model. In this article we aim at demonstrating that
human vision based color opponent models are also of
interest with the cells classification and segmentation
issue. In the case of MGG image coloration, which
is widely used, we show that color opponent models
are much more adapted than classical RGB model.
Then we describe the segmentation method based on
color multi-thresholding, mathematical morphology
processing and adapted for color opponent models.
We compare results on CIELAB model, which is
the most known and used human vision based
model, LUX (Logarithmic hUe eXtension) (Lievin and
Luthon, 2004) model, and CoLIP (Color Logarihtmic
Image Processing) (Gouinaud et al., 2011) model,
two human vision based models derived from the
LIP (Logarihtmic Image Processing) theory (Jourlin
and Pinoli, 1988; 2001) and the visual human color
perception.
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Fig. 1.

(a), (b), and (c): typical macrophage images obtained with cytocentrifugation process and MGG

coloration and then observed on an optical microscope with the 40x objective (Size: 1560 x 1920 pixels).

MATERIALS AND METHODS
IN VITRO MODEL

Macrophage cell culture

The RAW 264.7 cell line was provided by
ATCC Cell Biology Collection (Promochem LGC)
and derives from mice peritoneal macrophages
transformed by the AMLV virus (Abelson Murine
Leukemia Virus). Cells were cultured in DMEM
medium (Dulbecco’s Modified Eagle’s Medium,
Gibco) complemented with 10% of fetal calf serum
(FCS, Gibco), 1% penicillin-streptomycin (penicillin
10000 units/ml, streptomycin 10 mg/ml, Sigma)
and incubated at 37°C under a 5% carbon dioxide
humidified atmosphere.

Cytocentrifugation

The cytocentrifuge is widely used in clinical
medicine and biological research to transfer biological
cells onto a microscope slide. Cells were grown
in 25 cm? culture flasks (1 million cells in 4 ml
of DMEMc). After proliferation, cells were gently
removed with a scraper and centrifuged. The desired
concentration of 100000 cells per slide were then
cytocentrifuged for 10 minutes at 600 rpm (Cytospin
Shandon) and air dried over night at room temperature.

May Grunwald Giemsa coloration

This staining is dedicated to air dried cytology
preparations such as cytocentrifugation and was
performed with an inclusion automat (Leica
Autostainer XL). The procedure was performed as
follows: Fixation in methanol for 15 minutes, staining
in May-Grunwald for 5 minutes, staining in Giemsa
for 10 minutes. Rinsing in a pH 6.8 buffer, rinsing
in a 50/50 buffer/acetone, dehydration in acetone X2
and clearing in xylene X3. This coloration allows the
distinction between cell nuclei which appeared violet
and cytoplasm which appeared in blue. Such details
would not be as precise without any preparation.
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Images acquisition

Samples were then observed on an optical
microscope (Nikon Eclipse 80i) coupled with a digital
sight Nikon camera. Acquisitions were performed
using different microscope objectives (10x, 40x, 60x
and 100x under oil immersion). For the rest of the
study, in order to have reproductive data, only the
images acquired with the 40x objective are treated.

Fig. 1 presents typical MGG images acquired
following the procedure described in this paragraph.
Results of the color segmentation algortithm presented
below will be displayed on these example images. Due
to the acquisition profile of the microscope, image
coloration can be bright or dark, and a blue halo can
appear (see Fig. 1c). A white balance algorithm will be
added before the color segmentation in order to extract
the sample background color and standardize images
balance.

COLOR VISION BASED MODELS

Color human perception can be described by
two complementary visual theories that model
representation and processing of color information
along the visual pathway. The trichromacy theory
(Young-Helmoltz) states that the retina contains three
types of cones, responsible for color vision and
sensitive to red, green, and blue wavelength. The
opponent process theory (Hering) states that the
human visual system interprets information about
color in an antagonistic way (Fairchild, 2005). Human
vision based color spaces usually follow the two
theories, and are divided in three steps which produce
three antagonists channels. The first step models
the trichromacy, i.e., the light absorption by cones
photoreceptors denoted L, M and S according to the
wavelengths of their spectral sensitivities peaks (Long,
Medium, and Short wavelength, respectively). When
converted to an electric signal, the light intensity
signal is compressed and psychological studies have
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shown that the neural response from a stimulus is
close to a logarithmic curve (Fairchild, 2005). This
cone compression corresponds to the second steps of
human vision based models. The third and last step
is the opponent processing of color information that
occurs on upper layers of the retina and on the brain,
and produces three opposing pairs of processes, one
achromatic and two chromatic red-green and yellow-
blue channels, which are linear combinations of the
cones’ neural responses (Fairchild, 2005).

The three color opponent models presented here,
the CIELAB model (Fairchild, 2005), the LUX model
proposed by Luthon et al. (Lievin and Luthon, 2004;
Luthon et al., 2010) and the CoLIP model proposed by
Gouinaud et al. (Gouinaud et al., 2011), follow these
three fundamental steps.

CIELAB model

The CIELAB color space is a color-opponent
space, where the dimension L* represents the lightness
and the dimensions a* and b* represent the red-green
and yellow-blue color-opponent dimensions, based
on nonlinearly compressed CIE XYZ color space
coordinates which take into account the illuminant or
white point (Xw, Yw,Zw) (Fairchild, 2005).
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The opponent process is modeled by the (Y,C,,Cp)
color space transformation applied on resulting
logarithmic chromatic tones. The (Y,C,,Cp) color
space transformation matrix called Py yy is:

03 06 0.1
Pux=| 05 —04 —0.1 4)
—02 -03 05

Finally, in applying the inverse isomorphism ¢! on
logarithmic antagonist channels resulting from the
(Y,C,,Cp) color space transformation, the (L,U,X)
channels that represent color in the LUX model can
be derived from (R, G, B) intensities as follows:

L=R+1D"G+1)"B+1)*" -1,

My (R+1
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y_J) 2 \L+1
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—— | =— i
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The CoLIP Model

The CoLIP model is the color extension of
the LIP model (Jourlin and Pinoli, 1988; 2001),
constructed following each step of the human vision
(Gouinaud et al., 2011). In the CoLIP framework, the
image has first to be transformed from its original
representation space to the cone pigment absorption
space (L,M,S). In the case of the (X,Y,Z) space,
the linear transformation matrix U from (X,Y,Z) to
(L,M,S) is the Mypg matrix (Fairchild, 2005):

0.38971 0.68898 —0.07868
Mppg = | —0.22981 1.18340 0.04641 ©6)
0 0 1
As in the LIP framework, color images

are represented by color tone vector f(x,y)
(I(x,y), m(x,y), s(x,y)) defined on a spatial domain
D in R? and related to intensity vector F =

(L(x,y), M(x,y),S(x,y)) through the following
relation:
! M(’(l_%)
f={m]=|{m(1-3). @
s

Mo (1 - %)
where My is a scaling factor, L;, M; and S; represent

incident light, and L;, M; and S; represent transmitted
light. The color tone vector is nothing else than
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Fig. 2. Cell image 1 cloud of points displayed in RGB (a), CIELAB (b), LUX (c) and CoLIP(d) chromatic planes.

a normalized inverted color intensity vector. This
inverted scale has a physical meaning as images
are transmitted images. The tone vector represents
matter opacity. With this definition, the (0,0,0)
vector represents a transparent point and (Mo, Moy, M)
corresponds to a dark point. The vector tone is valued
in [0,My)?. In the digital case, image intensities are
expressed on 256 gray levels with a floor quantization.
The scaling factor My is set to 256 and the tone vector
f is defined as follows:

(1 My—L—1
f=|m|=|M-M—-1 (8)
N 1\40 —-S5—1

The cone compression is modeled in the CoLIP
model by the isomorphism ¢
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Here the ¢ function is applied to each tone vector
coordinates. The resulting vector is the logarithmic
tone vector f = (I,/,5). The opponent processing
is modeled in the CoLIP framework by a linear
combination of the logarithmic tone vector coordinates

[, i, and § computed with the matrix P.

a B v
P=|o B ¢ (10)
(xl/ I}ll 7//

The resulting vector is the antagonist logarithmic tone

vector f = (d, fé,be) (where a stands for achromatic,
rg for red-green and yb for yellow-blue).

a I al + B+ ys
gl =pPx|m| =\ dl+Bm+ys |, D
yb g (X”l-‘rﬁ"ﬁ’l-l-}//f

where parameters o, 3,7 > 0 define the achromatic
channel, parameters o', ¥ > 0, B’ < 0 define the red-
green channel, and parameters o, " <0, ¥/ <0
define the yellow-blue channel.
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If L =M = §, the image is achromatic (gray
level image). Therefore rg = 0, ﬁ? =0and d=1=
m = §. The P matrix parameters satisfy the following
relations:

a+p+y=1,

o +p+y =0,

OCN+,B//+Y”=0.
In this application, the antagonist transformation
matrix Pc,zp is (Gouinaud et al., 2011):

(12)

40/61 20/61 1/61
Peop=| 1 —12/11 1/11 (13)
1/9 1/9  —2/9

Comparison and interests

As explained in introduction, MGG coloration
produces images with blue and red dominant hues.
The three interest areas, living cells’ nuclei, living
cells’ cytoplasms, and scattered dead cells’ nuclei are
respectively dark purple, blue and bright purple. The
aim of the segmentation is to detect disconnected
living cells nuclei, in order to numerate living cells.
Achromatic information on color opponent spaces do
not give more information that can be found on R,
G or B classical channels, since the cytoplasms and
dead cells luminosity are not really different. But
chromatic information, especially in color opponent
spaces, could allow detecting a chromatic difference
between the three interest areas. In Fig. 2 are plotted
the image 1 clouds of points in the chromatic planes
(R,B) in primary space RGB, (a*,b*) in CIELAB
space, (U,X) in LUX space and (rg,yb) in CoLIP
space. The three interest areas appear clearly as distinct
clouds of points on each diagram. On the (R,B)
chromatic plane, these areas are very close but on
human vision based models, these three areas are
clearly distinct and even more on both LUX and CoLIP
chromatic planes. As they better model the human
visual perception, human vision based models allow
to compute color contrast among the interest areas and
to include chromatic information in the segmentation
process.

Thus, chromatic information given by human
vision based models can enhance the luminosity
segmentation. MGG images have a dominant blue
hue, so luminosity and yellow blue channel will
be redundant. But, the red-green channel should
give information, particularly to detect living cells
cytoplasm and nuclei frontier which could be of
interest to detect and numerate living cell nuclei. In
Fig. 3, the red-green channel of image (a) Fig. 1 is
displayed within CIELAB, LUX and CoLIP models.
We can see that it allows to differentiate cytoplasm and
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nuclei but also dead cells. This is particularly visible
on the CoLIP yellow-blue channel.

Giving all these results, the color image
segmentation method described in the following
section aim at detecting living cells’ nuclei in detecting
image pixels with achromatic and yellow-blue channel
and then sharpens the cell detection disconnection in
removing cytoplasm and dead cells nuclei with yellow-
blue channel. Dead cells are detected on the red-green
channel.

SEGMENTATION ALGORITHM

Color segmentation methods for cytological
images are based on four fundamental steps. A step of
pre-treatment allows checking the presence of relevant
particles, smoothing the image to reduce noise, and
eliminating non relevant elements. The color image is
then converted in an appropriate color space. Then the
algorithm main step is the relevant particles regions
extraction. Here, various method can be found in
the state of the art including multi-thresholding and
color gradient (Lezoray et al., 1999; 2003), histogram
clustering (Lezoray, 2003; Lezoray and Lecluse,
2007), and pixel classification (Meurie et al., 2003).
This step is achieved with segmentation refinement
using mathematical morphology. Eventually a step of
region growing is performed, in order to disconnect
and quantify the segmented particles. This is most of
the time performed by a watershed algorithm.

The color segmentation method presented in this
article is composed of the same fundamental four
steps. The step of pre-treatment consists in extracting
an automatic red scale bar that appears on some images
and induces trouble in the algorithm and in smoothing
the image. It is then shown that color opponent spaces
(CIELAB, LUX or CoLIP) are more convenient than
classical primary space to discriminate relevant areas
in this type of cytological images, due to their color
antagonism and logarithmic image dynamic range.
The color conversion also includes a white balance
algorithm in order to extract the sample background
color and standardize images balance. The third step
is the phase of regions extraction and it is performed
using Otsu multi-thresholding. The segmentation is
then enhanced by morphological filters. Eventually,
the fourth and last step quantifies living and dead
cells using watershed transform and evaluate sample
viability. All experimental results of this study have
been computed with matlab.
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Fig. 3. Red-green chanel in CIELAB (a), LUX (b) and CoLIP (c) color opponent models

VIABILITY QUANTIFICATION achromatic axe in the chromatic plane:
PRE-TREATMENT L =Mo—L’
a' = —a' (14)

On some images, an automatic red scale bar can
appear, and induce trouble in the algorithm. A mask b¥ = —p*
image of the red scale bar is created, and then pixels
on the edge of the scale bar a progressively replaced

by a close pixel, like an erosion, until the scale bar L =My—L

disappears completely. Then, the image white point, U — My —2U (15)
corresponding to the sample color back ground is /

computed. The difficulty is to define the value to X =2X Mo

give to the white point. In order to eliminate local

saturation phenomenons, the white point is calculated SEGMENTATION

in taking pixels that have greatest values of images

on all channels until a certain percentage p of image Regions and Marker extractions

pixels is reached, and then taking the mean of these

pixels on each channel. Here p = 1% (Gouinaud et al., Multi-thresholding segments each color space
2011). The smoothing algorithm is performed using a  channel into N classes by means of the Otsu’s
median filter. multi-thresholding method, that uses intra-class

variance optimization (Ostu, 1979). Achromatic and

CONVERTING IMAGE FROM RGB TO yellow-blue channels are divided into three areas
THE COLOR OPPONENT SPACE corresponding to interest areas, in order to segment

nuclei areas. Red-green channel is divided into 4 to 6
First of all, a white balance algorithm is  areas (depending on the model) to be more precise and

performed on the image. Withim CIELAB model, segment dead nuclei areas. Morphological operations
the white balance is integrated since the white point ~ are computed to ﬁl.l holes, remove Sm?ll pgrticles,
(Xw,Yw,Zw) is taken into account (see Eq. 1). InLUX  smooth cells edges, n orde'r to produce binary images
and CoLIP model, the white balance algorithm is the  that allow a cell quantification.

ratio of R,G,B or L,M,S chanels, respectively, to the )
white point Ry, Gy, By or Ly, My , Sy, respectively. Morphology processing and watershed

Color conversion from RGB to the human vision The Euclidean distance to the object boundaries is
based space are performed following Egs. 1, 13, and  first computed, and then the watershed is applied to the
5. Here a scale normalization is needed as chromatic ~ inverse of the distance map. The watershed algorithm
scales are different in each model (see Fig. 2). 1is applied on both nuclei and dead nuclei markers
CIELAB and LUX models are rescaled in order images to disconnect close particles and quantify
to have the CoLIP model chromatic range: (0,Mp)  the number of particles. The sample viability rate is
for achromatic channel and (—My,My) for chromatic ~ directly deduscted from the number of viable cells and
channels and so that the (0,0) value corresponds to the  dead cells.
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Fig. 4. (a), (b), and (c): results of the color image segmentation with CoLIP model on corresponding images
Fig.1. Living cells nuclei are in red and dead cells are in green.

DISCUSSION

Result of the color segmentation algorithm on
images from Fig. 1 with CoLIP model are displayed
in Fig. 4. Color segmentation and numeration of living
and dead cells has been tested on a data base of 32
MGG images. Exact numeration of living and dead
cells has been performed by a biologist. Then, the table
1 compares absolute error average (Av) for living and
dead cells (i.e., the average error in number of cells)
quantification and viability rate absolute error average
(Av) and standard deviation (SD) in percentages on
each color opponent space. The number of viable cells
on the data base samples go from 47 to 195, depending
on the sample. The number of dead cell is completely
different from one sample to another, some have a
viability rate of 100% (see Fig. 1c) and some have a
viability rate of 60% with more than 50 dead cells.

Table 1. Average (Av) absolute error of living cells
and dead cells quantification and average (Av)
and standard deviation (SD) of sample viability in
percentage on CIELAB, LUX and CoLIP model.

Model  Living cells Dead cells Viability
Av Av Av SD
CIELAB 24.6 19.9 15.1  7.85
LUX 16.0 5.38 4.68 4.2
CoLIP 10.8 4.78 3.78 281

Results obtained in this study indicate that
human vision based models allow to enhance simple
luminosity segmentation, in adding color information.
The CoLIP and LUX model give much better results
than CIELAB model. CoLIP results are better on living
cells and much better on dead cells. This can be
explained by the fact that CoLIP red-green channel
discriminate dead cells much more than CIELAB and
LUX red-green channels. Viability rate error is clearly
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better with CoLIP and LUX model, and better within
CoLIP model than LUX model considering that the
standard deviation is lower and thus the viability rate
error really low and really stable. Images with a blue
halo (see Fig. 1c) induce trouble in the algoithm
(see Fig. 4c) since the white balance remove the
sample background color but also the contrast between
relevant areas: special care is required during the
image acquisition on the microscope, especially for the
contrast balance. These results validate our method.
The aim of cytological coloration such as MGG is to
improve the human eye contrast. As color opponent
models, and even more LIP-based color opponent
models, follow each step of the human vision, any
segmentation method on cytological images could
probably be improved by using these models. Indeed,
due to the color antagonism and the logarithmic image
dynamic range, colors are much more discriminated
before any segmentation method is performed.

As our segmentation method demonstrates the
utility of human vision based color opponent models,
it would be interesting in a near future to enhance this
methodology with other morphological parameters.
Indeed, macrophages are immune cells able to
internalize foreign bodies during the phagocytic
process leading to the formation of vesicles. Coupling
cell death detection with a precise quantification of the
amount of vesicles generated will be a powerful tool
to assess biological important effects in toxicological
studies (Nan et al., 2008; Leclerc et al., 2010; Song
et al., 2010).
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