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ABSTRACT

Open cell foams are formed by an interconnected network of struts whose thickness varies locally. These
variations are known to have an impact on the elastic and thermal properties of the foam. In this paper we
quantify the local strut thickness by means of micro computed tomography (µCT) imaging. We develop a
fully automatic algorithm to extract the foam’s skeleton from a binary image and its topological decomposition
into vertices and struts. This allows to estimate the thickness of individual strut segments by the Euclidean
distance transform, where an appropriate correction for struts with nonspherical cross-sectional shape is
applied. Conflating these estimates based on the strut lengths results in a strut thickness profile for the entire
foam. Based on this profile we give a statistical justification that a strut thickness model should depend on the
strut length. Furthermore, the investigation of polynomial models for the strut thickness profile by means of
regression analysis leads to a new three-parameter strut thickness model.

Keywords: digital topology, Euclidean skeleton, image analysis, regression.

INTRODUCTION

Foams are nowadays used in a wide range of

application areas including heat exchangers, filters,

insulators or sound absorbers (Banhart, 2001). In

this work we are interested in so-called open cell

foams which are formed by a continuous network

of struts. The macroscopic properties of a foam

such as thermal conductivity, permeability, elasticity

or acoustic absorption are highly influenced by

the microstructure. Therefore, an understanding of

the reaction of these properties to changes of the

microstructure is crucial for the optimization of foams

for given applications.

Three-dimensional images obtained by micro

computed tomography (µCT) are a valuable source of
information on the microstructure geometry of foams.

Geometric characteristics which can be estimated from

image data include the volume fraction, the specific

surface area, distributions of cell size or shape as well

as mean value characteristics of the strut system, e.g.,

the mean strut thickness (Ohser and Schladitz, 2009).

Using these characteristics models based on

random tessellations can be fit to the observed foam

structure. By change of the model parameters, virtual

foams with altered microstructure can be generated.

Application of finite element techniques then allows to

study the influence of certain geometric microstructure

characteristics on macroscopic properties of the

foam (Roberts and Garboczi, 2002; Li et al., 2006;

Kanaun and Tkachenko, 2006; Redenbach, 2009;

Tekog̃lu et al., 2011; Liebscher et al., 2012).

A typical feature of open foams is that the strut

thickness varies locally. Usually, the struts are thicker

at the vertices than at the centers (Fig. 1). This local

thickness variation was shown to have an impact on the

elastic and thermal properties of the foam (Jang et al.,

2008; Kanaun and Tkachenko, 2008). Therefore, it

should be included in the model.
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Fig. 1: Visualization of a strut of an open cell

aluminum foam showing the locally varying strut

thickness.

In Lautensack et al. (2008), a foam model based

on locally adaptable dilation of the edges of a random

tessellation was introduced. The local strut thickness

was modeled by a quadratic function depending on

* The topic of this paper was presented at the S4G Conference, June 25-28, 2012 in Prague, Czech Republic.
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the distance from the vertices. The function was

parametrized using mean strut characteristics which

were estimated from µCT image data. Owing to the

parametrization with mean values, the model did not

reproduce the variability of the real foam.

In the same year, Jang et al. (2008) presented

an analysis of the strut length distribution and the

cross-section area in polymeric and aluminum foams.

Cross-section areas were measured from sections

of the foam’s struts leading to a polynomial strut

thickness model. They further revealed a nonlinear

dependence of the mid-strut thickness on the strut

length. This was incorporated into their microstructure

model by forming two length classes and scaling the

normalized strut thickness by a function depending on

the strut length. Hence, modelling local strut thickness

disregarding the strut length is insufficient.

In this paper, we extend the approach of Jang et al.

(2008) by a systematic analysis of the complete strut

system of the foam. For our study we develop a fully

automatic extraction of the foam skeleton adopting

the skeletonization technique of Chaussard et al.

(2010). Further, we introduce a novel algorithm

for decomposing the skeleton into individual curve

segments.

Based on the decomposition we establish the

notion of the local spherical contact profile as the

radius of the maximal inscribed ball at any point

of a curve segment. A regression analysis of the

extracted profile reveals that the strut thickness

depends on the strut length in a more complex

way than could be expressed by scaling. As result

we introduce a new three-parameter model for

the strut thickness that is superior compared to

existing models (van Merkerk, 2002; Jang et al., 2008;

Kanaun and Tkachenko, 2008).

The paper is organized as follows: We start with

a survey on digital images and digital topology.

These notions are essential for the following two

sections. In these we present the skeletonization

technique that forms the core of our algorithm and

explain how the skeleton can be decomposed into its

topological components. Based on this decomposition

we introduce the local spherical contact profile to

describe the varying strut thickness. Finally, the

algorithm is applied to a tomographic image of an

open cell aluminum foam, for which we conduct a

regression analysis of its spherical contact profile.

We conclude with a discussion of our results and an

outlook to future work.

BASIC NOTATIONS

In this section we summarize the basic
definitions this work is founded on. We adhere
to the notations given in Couprie et al. (2007).
For a more detailed survey we refer to
Rosenfeld (1981), Nakamura and Aizawa (1985) and
Kong and Rosenfeld (1989).

NOTIONS FOR DIGITAL IMAGES

We denote by Z the set of integers, by N the set
of strictly positive integers and by R the set of real
numbers. The set of positive real numbers is denoted
by R+. A three-dimensional binary image is defined as
a subsetVI of the cubic gridZ

3 together with a function
f : VI → {0,1}. We refer to X ⊂ VI mapped to {1} as
foreground and to its complement X , that is mapped
to {0}, as background. A point x = (x1,x2,x3) ∈ VI
with xi ∈ Z is called a voxel if we want to emphasize
its volumetric extent. The Euclidean distance of two
points x and y inVI is given by d(x,y) =

√

∑i(xi− yi)2.
We denote the ball of radius r > 0 centered in x ∈ VI
by

Br(x) = {y ∈VI | d(x,y)≤ r} . (1)

The Euclidean distance of X ⊂ VI and x ∈ VI is
defined as d(x,X) = miny∈X d(x,y). The mapping

DX(x) = d(x,X) that assigns to each point x ∈ X

its distance to the complement X of X is called
Euclidean distance map. Note that for all x ∈ X ,
the value DX(x) is the radius of the maximum ball
centered in x that is completely contained in X .
DX can be computed in linear time using any of
the algorithms presented in Meijster et al. (2002),
Maurer et al. (2003) or Schouten et al. (2006).

SURVEY ON DIGITAL TOPOLOGY

The neighborhood of a point x ∈ VI is defined as
the set of all points in VI that are adjacent to x with an
adjacency notion depending on some distance. In the
remainder of this work, we consider the neighborhoods

N6(x) = {y ∈VI | ∑
i

|xi− yi| ≤ 1} (2)

and

N26(x) = {y ∈VI |max
i

|xi− yi| ≤ 1} , (3)

that are induced by the city-block and the chessboard
distance. The neighborhood obtained from N26(x) by
removing its outer corners is given by

N18(x) = {y ∈VI | ∑
i

|xi− yi| ≤ 2}∩N26(x) . (4)

We define N∗
n (x) = Nn(x) \ {x}. Note that the number

of points in Nn(x) is n+1.
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Let x and y be two points in VI . We say that y is n-

adjacent to x iff y∈N∗
n (x). A setY ⊂VI is n-adjacent to

x ∈VI iff there exists a point y ∈Y which is n-adjacent

to x. We call a sequence of points x0, . . . ,xk in VI an

n-path, if xi−1 is n-adjacent to xi for all 1 ≤ i ≤ k.

Given a nonempty subset X ⊂ VI , two points x,y ∈ X

are called n-connected iff x and y are joined by an n-

path in X . This definition fulfills the three axioms of an

equivalence relation (reflexive, symmetric, transitive)

and hence its equivalence classes induce a partition of

X into its n-connected components, in the following

abbreviated as n-components. We call X ⊂ VI n-

connected if it consists of exactly one n-component.

The set of all n-components of X that are n-adjacent to

a point x is denoted byCn[x,X ].

To have a correspondence between the topology of

the foreground and the background of VI – and thus

to avoid connectivity paradoxes (Kong and Rosenfeld,

1989) – we must assign them with complementary

neighborhoods. For instance, if we use N26 for the

foreground of VI then we have to use N6 for the

background and vice versa. In the sequel, we assign

N26 to the foreground and N6 to the background.

EUCLIDEAN SKELETON

The first step of our procedure to estimate the

local strut thickness is to compute the skeleton of the

foam structure. Cenens et al. (1994) were the first who

introduced a suitable algorithm for three-dimensional

foams based on the watershed transform (Soille,

2002). However, this algorithm must be carefully

parametrized to avoid over- or undersegmentation,

respectively. Even with an optimal parametrization we

could not avoid undersegmentation at the boundaries

completely. Hence the watershed transform seems not

suitable for our fully automated approach.

A parameter free concept for skeletonization is the

sequential removal of points from the original shape

that are not necessary to preserve the topology of the

structure. As it is important for our application that

the skeleton is centered within the foam structure, the

main challenge is to determine the order in which

these points shall be removed. But before we devote

our attention to this problem, we give a formal

definition of skeletonization as used throughout this

work. The following sections are based on the work

of Couprie et al. (2007).

SIMPLE POINTS

The notion of simple points is essential for the

definition of topology preserving skeletons. Informally

speaking, a point of X ⊂ VI is called simple if its

removal from X does not change the number of

connected components and tunnels of X and X .

In the literature various methods for

characterizing simple points have been proposed

(Kong and Rosenfeld, 1989; Couprie and Bertrand,

2009; Evako, 2011). We adopt the approach

based on counting the 26- and 6-components in

the neighborhood of a point (Bertrand, 1994;

Bertrand and Malandain, 1994). More precisely, the

two topological numbers for a point x ∈ X ⊂ VI are

defined as

T26(x,X) = #C26[x,N
∗
26(x)∩X ] (5)

and

T6(x,X) = #C6[x,N
∗
18(x)∩X ] , (6)

where #X denotes the cardinality of X . The point x is

then simple (for X) iff T26(x,X) = 1 and T6(x,X) =
1. Note that we use N∗

18 in Eq. 6 to avoid explicit

checking for holes. For a detailed explanation we refer

to Bertrand (1994).

ULTIMATE HOMOTOPIC SKELETON

Using this notion we can now define the skeleton

of a finite subset X ⊂ VI . We call Y ⊂ VI a homotopic

thinning of X if Y = X or Y was obtained from X

by iterative deletion of simple points. An ultimate

homotopic skeleton of X is a homotopic thinning Y of

X with no simple points left in Y .

The definition of the homotopic thinning itself

already provides an algorithm to compute the ultimate

homotopic skeleton. However, the result of the

skeletonization will depend on the order in which

points are deleted. This order is guided by a priority

function. Points with a low priority shall be removed

before those with a higher priority. The ultimate

homotopic skeleton can be computed with time

complexity O(n log(n)) independently of the priority

function (Couprie et al., 2007).

ROBUST EUCLIDEAN SKELETON

The remaining question is how to choose the

priority function to ensure that the skeleton is

centered with respect to the Euclidean distance. Using

the Euclidean distance map may lead to unnatural

branching of the skeleton (Talbot and Vincent, 1992)

or even spurious branches (Chaussard et al., 2010).

On the other hand, being centered implies the

inclusion of the ridge points of the Euclidean distance

map in the skeleton. Formally, for X ⊂VI , ridge points

are either (a) the centers of all balls in X that are
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not strictly included in any other ball contained in X

(Blum, 1967) or (b) all points x ∈ X that have at least

two closest points in X . Both definitions differ only by

a negligible set of points (Matheron, 1988). The set

comprised of all ridge points is known as the medial

axis.

By construction, the medial axis is centered in the

object with respect to the distance used in its definition.

If we weight each point of an object X with the radius

corresponding to its medial axis point we obtain a

function that guides the thinning process towards the

innermost medial axis points (Chaussard et al., 2010).

However, the medial axis is rather sensitive to noise

on the object boundary and thus in applications often

some sort of filtering has to be applied (Attali et al.,

2009).

To alleviate the stability problem, Chazal and

Lieutier (2005) extended notion (b) to the λ -medial
axis, which was recently transferred to the digital

framework by Chaussard et al. (2010). It was shown

to be more stable under small perturbations of the

boundary and also to be less sensitive to rotations than

the classical medial axis. These properties are inherited

by the skeleton.

Let S be a subset of Rn. We denote by

R(S) =min{r ∈ R
+ | ∃x ∈ R

n : Br(x)⊇ S} (7)

the radius of the smallest ball enclosing S.

Furthermore, let X be a subset of VI . The extended

projection of x on X is given by

Πe
X
(x) =

⋃

y∈N6(x)∩X :d(y,X)≤d(x,X)

ΠX(y) , (8)

where

ΠX(x) = {y ∈ X | ∀z ∈ X : d(y,x)≤ d(z,x)} (9)

denotes the plain projection of x ∈ X on the

complement X of X . Couprie et al. (2007) then define

the projection radius map as the function FX(x) =
R(Πe

X
(x)) that assigns to each point x ∈ X the radius of

the minimum ball enclosing all extended projections of

x on X . Using the extended projection in the discrete

framework avoids the reduction of the projection to

a singleton in ill-conditioned cases (Chaussard et al.,

2010, Sec. 3).

Thresholding FX with λ > 0 yields the λ -medial

axis at level λ . By definition all λ -medial axes at

level λ ′ > λ are included in the axis at level λ .
The computational cost for computing the extended

projection is O(n) (Couprie et al., 2007). A stochastic

algorithm for computing enclosing spheres in expected

linear time was proposed by Welzl (1991). A slightly

tuned version was given by Gärtner (1999).

In our application we do not use the λ -medial

axis itself. We rather apply the radius projection map

FX as priority function during the thinning process

that automatically guides the process to the topological

kernel of the several nested λ -medial axes. That is, the

smallest subset of all λ -medial axes having the same

topology as the original shape. As a consequence the

skeleton is curvilinear (Fig. 7a).

During homotopic thinning topological artifacts

may evolve if a semi-continuous function such as

FX is used (Passat et al., 2007; 2008). To avoid this

behavior we enforce the thinning process to start with

the outermost points of the shape by preordering all

points with respect to DX . Note that a partial order

is sufficient as points with the same priority may be

removed in arbitrary order.

TOPOLOGICAL DECOMPOSITION

OF SKELETONS

The second step of our procedure consists of the

decomposition of the skeleton into its topological

components. As we are dealing with open cell foams

we work under the model assumption that the skeleton

consists of curves and curve junctions, only. Hence,

each skeleton point has to be labeled as either a curve

or a curve junction point.

In the context of characterizing simple points two

methods were proposed for such a classification. Note

that both methods are not restricted to curves and curve

junctions. In the following two sections we give a

short survey on these methods and their limitations.

Subsequently, we will propose a new algorithm that

overcomes these limitations.

CLASSIFICATION BY TOPOLOGICAL

NUMBERS

Denote by x a point of a skeleton X . According

to Malandain et al. (1993), x can be classified

topologically by evaluating T26(x,X) and T6(x,X). As
the skeleton contains no surfaces, T6(x,X) is always

one and therefore only T26(x,X) is meaningful. So x

is part of a curve in X if T26(x,X) = 2 and part of

a curve junction if T26(x,X) > 2, respectively. Note

that Malandain et al. (1993) used N18 instead of N∗
18

in the definition of T6(x,X). However, this does not

make a difference since N18(x)∩X = N∗
18(x)∩X for

any x ∈ X ⊂VI .
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As a consequence of discretization effects “thick

junctions” may be misclassified as depicted in

Fig. 2 (top row), where all points are classified as

curve points. Such misclassifications are corrected by

postprocessing the preliminary classification: For each

curve point the neighbors that are curve or curve

junction points are counted. If the number of such

neighbors exceeds two, the point is classified as curve

junction.

However, the algorithm also allows for the

classification of points of other topological types, e.g.,

surface points or surface junctions. In contrast to our

model assumption there may be point configurations

of the skeleton that are recognized accordingly. An

example is shown in Fig. 2 (bottom row), where the

central point is falsely classified as a single surface

point. Such misclassifications are ignored by the

correction scheme.

CLASSIFICATION BY BETTI NUMBERS

Another classification scheme was introduced by

Saha and Chaudhuri (1996). It is based on the binary

versions of the Betti numbers in three-dimensional

space: the number of connected components B1, the

number of tunnels B2, and the number of cavities B3.

Let x be a point of a skeleton X . Then the first Betti

number of N∗
26(x)∩X is given by B1(x,X) = T26(x,X).

Following Saha and Chaudhuri (1996) the number of

tunnels is zero if all 6-neighbors of x are also contained

in X . Otherwise it is one less than the number of 6-

components in N∗
18(x)∩X that contain at least one 6-

neighbor of x. More precisely, the number of tunnels

of x ∈ X is defined as

B2(x,X) = 0 (10)

if #{N∗
6 (x)∩X}= 6 and

B2(x,X)= #{Y ∈C6[x,N
∗
18(x)∩X ] |Y ∩N∗

6 (x) 6= /0}−1 ,
(11)

otherwise. Note that only 6-connected tunnels are

considered by this definition. As the skeleton contains

no surfaces the number of cavities is always zero.

If B2(x,X) is zero, we get the same result as by

topological number classification without correction.

Otherwise there are several possible topological

classes for a point x and postprocessing is necessary.

For each such point, the topological type of its

neighbors in the skeleton is checked: If all neighbors

of x are curve points or curve junctions, then x belongs

to a curve junction (Fig. 2, bottom row) for an example.

Though, for the “thick junction” as depicted in Fig. 2

(top row) the algorithm falsely classifies the junction

points as curve points.

CLASSIFICATION BY NEIGHBOR

COUNTING

For our application we have two requirements

on a point classification scheme. Firstly, it is crucial

to reliably detect curve junctions. Secondly, if the

curve junction points are removed from the skeleton,

its curves should become segmented. The approaches

introduced above fail on both requirements even

on rather simple point configurations. Inspired by

the postprocessing method used in the topological

numbers approach, we propose a new classification

method that fulfills both requirements. Note that a

similar approach has also been used by Montminy

(2001).

The basic idea of our approach is to count the

number of neighbors of each skeleton point. If this

number is greater than two, the point belongs to a curve

junction. Otherwise it is a curve point. If possible,

the size of the junction is reduced by relabeling

junction points which are not necessary to ensure the

segmentation of the skeleton’s curves as curve points.

Fig. 2 illustrates one out of four (“thick junction”) or

six (“thin junction”) possible configurations found by

our algorithm.

To determine the order in which points are

removed a priority function is necessary. We suggest

the Euclidean distance map as priority function as it

guarantees that points close to the boundary of the

original shape are removed first and the most centered

points remain as curve junction. In addition we must

assure that no topological changes occur during the

thinning step. Therefore, we allow only points to be

removed from a junction that are simple for it.

To make this more rigorous let us introduce some

definitions. We denote the neighborhood of X ⊂ VI
by Nn(X) =

⋃

x∈X Nn(x). The set composed of all n-

components of X ⊂ VI that are n-adjacent to Y ⊂
VI is denoted by Cn[Y,X ]. Let X be a skeleton and

C ⊂ X the set of all 26-components of X that form a

curve junction. We now iterate over all curve junctions

J ⊂ X and remove all simple points j from J (in

decreasing order w. r. t. DX ) for which the number of

26-components in N26(J
′)∩X \J′ does not change, i.e.,

#C26

[

J′, N26(J
′)∩X \ J′

]

= #C26 [J, N26(J)∩X \ J ] ,
(12)

where J′ = J \ { j}. Eq. 12 guarantees that the curves

of the skeleton become separated from each other if all

curve junction points are removed from the image.
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Fig. 2: Two types of curve junctions that are hard to recognize in three dimensions (illustrated in two dimensions

– the upper and lower slice are empty). The columns show the classification results of different algorithms.

LOCAL SPHERICAL CONTACT

PROFILE

In the third step of our procedure we estimate the

length and the local thickness of the individual strut

segments based on the decomposition of the skeleton

introduced in the previous section. These estimates are

then combined to a thickness profile of the entire foam.

In Jang et al. (2008) the strut thickness is defined

as the cross-sectional area. To compute it we would

have to slice the strut, which is computationally

expensive and owing to discretization errors not

robust. Therefore, we employ the radius of the struts’

inscribed ball as measure for the strut thickness. This

corresponds to the incircle of a cross-section and

can be computed in linear time using the Euclidean

distance transform.

Note that for modelling there is no practical

difference between both approaches. Knowing the

cross-sectional shape in conjunction with the radius

of the incircle provides the same information as

combining the cross-sectional shape and its area. As

the cross-sectional shape is generally known both
definitions can be converted into each other.

COMPUTING THE SPHERICAL

CONTACT PROFILE

Let us denote by Y the set of curve segments of
the decomposed skeleton of an open cell foam X . Each
strut of the foam contributes a curve segment Z ∈ Y

which is assumed to be of length ℓ. The local strut
thickness at point x ∈ Z is defined as the radius of
the largest ball with center x inscribed in X . It may be
parametrized using the Euclidean distance of x to the
strut center x0

ξ (x) =











−d(x,x0) x< x0,

0 x= x0,

d(x,x0) x> x0

(13)

yielding a function pZ(ξ ), with ξ ∈
[

− ℓ
2
, ℓ
2

]

(see Fig. 3
for an illustration). The expected spherical contact
profile of the entire foam is defined as p(ξ | ℓ) =
E(pZ(ξ ) | ℓ), that is the mean thickness at distance ξ
of all struts Z with length ℓ.
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The struts of real foam samples are often slightly
curved. We therefore approximate the length of a curve
segment Z by the sum of the Euclidean distances from
the center x0 of the struts’ curve in the skeleton to
the adjacent curve junctions x and y, that is ℓ(Z) =
d(x,x0)+d(y,x0).

ξ(x)

DX(x)

−

ℓ

2

ℓ

2

x0

Fig. 3: Illustration of the spherical contact profile for

an individual strut.

VOLUME CORRECTION

According to Gibson and Ashby (1999), the
volume density (also known as relative density in
physics) is the single most important parameter in
mechanical and thermal properties of foams. Hence
it should be captured accurately in microstructure
models. As the spherical contact profile measures the
radius of the inscribed ball of a strut, the volume
of struts with nonspherical cross-sectional shape
will be underestimated. Therefore, when generating
microstructure models, we scale all measurements pZ
for a given curve segment Z by an individual volume
correction factor cZ to yield the same volume as the
corresponding strut.

To compute the volume correction for an
individual strut we must first separate it from its
adjacent nodes. In a real foam the nodes are formed by
complex minimal surfaces which join smoothly with
their connecting strut segments. Two nodes from an
aluminum foam are shown in Fig. 4. As the centers of
the nodes coincide with the junctions of the skeleton
we define a node as the region occupied by the ball
Br(x) with radius r = DX(x) centered in the curve
junction x.

Fig. 4: Two nodes from a 26-ppi aluminum foam

The strut segment between any two junctions x,y∈
Y is computed as follows: Let Lxy be the vector

from x to y whose normalized direction is denoted

by r. Further, define two planes p1 and p2 that

pass orthogonally to Lxy through x+DX(x)r and y−

DX(y)r, respectively. The connecting strut segment is

composed of all points of the strut between p1 and p2.

See Fig. 5 for an illustration along with a visualization

of a foam cell whose nodes were removed.

We define the volume correction cZ for a strut as

the ratio of the cross sectional area to the incircle

averaged over all slices of the corresponding strut

segment. Let C be the strut segment whose curve is

given by Z ∈ Y . Then cZ is computed as

cZ =
v(C)

∑z∈Z∧x+DX (x)r<z<y−DX (y)r πDX(z)2
, (14)

where v(C) denotes the volume of C as estimated

by voxel counting from the image. The denominator

corresponds to the sum of the circle areas (computed in

voxels) between the planes p1 and p2. We assume here,

that the volume contribution of the nodes adjacent toC

are of the same magnitude as forC.

r1 r2

p1 p2

x y

ℓ

(a)

(b)

Fig. 5: (a) Illustration of the model used to separate

strut segments from the adjacent node. (b) Foam cell

whose nodes (dark parts) were removed using the

model shown in the illustration (a).
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APPLICATION TO OPEN METAL

FOAM

To evaluate our algorithm we applied the technique

to an 26-ppi open cell aluminum foam. The analysis

is based on a tomographic image of size 630 x

1370 x 1370 voxels with an isotropic voxel edge

length of 14.16 µm. This corresponds to 8.9 mm

× 19.4 mm × 19.4 mm of material. Owing to the

image’s high contrast we could binarize it using

Otsu’s (1979) threshold without any preprocessing.

Furthermore, some small holes in the strut system were

morphologically closed to prepare the binarized image

for the analysis.

SKELETONIZATION OF THE FOAM

The skeleton was computed as stated previously.

A subvolume of the foam and its corresponding

skeleton can be seen in Fig. 6. We assessed the

topological correctness of the skeleton by comparing

the Euler number of the skeleton and the binarized

image of the foam using the MAVI software

package (Fraunhofer ITWM, 2012). Both yielded the

value −8898 (computed in the 26-neighborhood,

Ohser and Schladitz, 2009).

Fig. 6: Cell of the aluminum foam and its skeleton.

The drawback of topology preservation is that

structural peculiarities of the foam are also captured by

the skeleton. Two common ones are shown in Fig. 7.

In the case of closed faces, one curve attached to

the appropriate face is missing in the skeleton. Its

influence on the estimated spherical contact profile is

negligible. On the other hand, the short curves that

evolve within eight-fold vertices may bias the estimate

of p(ξ | ℓ) and thus must be ignored. Hence, we only

considered curves that contain at least 10 voxels in our

study.

The resulting skeleton was decomposed into

15494 curves. For approximately 84% of those the

volume correction factor could be determined. The

remaining struts were either part of a closed or a

partially closed face, for which we used the mean

volume correction factor c= 1.58.

ANALYSIS OF THE SPHERICAL

CONTACT PROFILE

After minus-sampling edge correction 8170 struts

remained. From those we removed nonsymmetric

outliers that were caused by broken or heavily bent

struts, leaving 7058 struts for the analysis. Fig. 8

depicts the volume corrected estimate of the spherical

contact profile p(ξ | ℓ). It shows the typical flat form

in the strut center (ξ = 0) which steeply rises towards

the nodes (increasing absolute value of ξ ).

An extremal behavior is shown below the fifth

percentile of the strut length distribution where

there is almost no increase of strut thickness while

approaching the node. This finding is supported by

the boxplot of the estimated mid-strut thickness p(0 |

ℓ) depicted in Fig. 9. We subdivided the struts into

the percentile ranges qi, j = (xi,x j], where xi denotes

the ith percentile of the strut length distribution. The

median and the variation of the mid-strut thickness

decrease with increasing strut length, while the box

of q0,5 stands almost on top of the other ones. This

indicates a nonlinear dependence of p(0 | ℓ) on ℓ as

reported by Jang et al. (2008).

(a) (b)

Fig. 7: Structural pecularities found in the aluminum

foam and their effect on the skeleton: Closed face (a)

and eight-fold vertex (b)
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Fig. 8: Plot of the measured spherical contact profile

p(ξ | ℓ) for the entire aluminum foam.
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Fig. 9: Boxplot of the estimated mid-strut thickness

p(0 | ℓ) subdivided into its length percentile ranges

qi, j. The median of p(0 | ℓ) is depicted as gray line

in the background.

To study the spherical contact profile in more detail
we conducted a regression analysis using weighted
least squares. Following Jang et al. (2008) we first
normalized the data with respect to mid-strut thickness

p(0 | ℓ) and strut length ℓ. Let us denote by ξ̃ = ξ/
ℓ the distance from the strut center ξ normalized by
ℓ. We then assume a polynomial of degree of at most
eight as initial model:

p̃2468(ξ̃ ) = a4ξ̃ 8+a3ξ̃ 6+a2ξ̃ 4+a1ξ̃ 2+1 , (15)

a1, . . . ,a4 ∈R, where the indices denote the exponents

of ξ̃ that are included. The odd exponents were
neglected due to the symmetric nature of the strut
profile. Caused by the normalization the polynomial

model shall equal one at ξ̃ = 0 and thus an intercept of
one was used.

Fig. 10 shows a plot of the measurements for the
shortest (q0,10), medial (q45,55) and longest (q90,100)
10% of the struts normalized by p(0 | ℓ) and ℓ along
with the initial model p̃2468 fitted to the individual
profiles. The resulting curves differ heavily from each
other, which indicates a dependence of p(ξ | ℓ) on
ℓ. Therefore, we subdivided the data into 10% length
percentile ranges qi, j for our analysis.

Table 1 summarizes the results of the all-subset
regression of p̃2468 guided by the MCp-statistic
(Fujikoshi and Satoh, 1997). MCp is a modification
of Mallows’ (1973) Cp-statistic that was shown to
be the minimum variance unbiased estimator of the
expected overall Gauss discrepancy (Davies et al.,
2006). Roughly speaking: The smaller the MCp-value
the better is the model as the disparity compared to
the initial model is small while, simultaneously, less
parameters are needed. In the first three columns the p-
values of a t-test for the significance of the individual
parameters in p̃2468 are given (null hypothesisH0 : ai =
0 against the alternative H1 : ai 6= 0). The p-values for

a1 were left out as they are all zero and thus ξ̃ 2 is
mandatory.

−0.4 −0.2 0.0 0.2 0.4

1
.0

1
.5

2
.0

2
.5

3
.0

p(
ξ̃
|
1)
/p
(0

|
ℓ)

ξ̃ = ξ/ℓ

p̃2468 fitted to q90,100
p̃2468 fitted to q45,55
p̃2468 fitted to q0,10

Fig. 10: Plot of the measurements for the shortest

(foreground points, black), medial (intermediate

points, red) and longest (background points, blue) 10%

of the struts normalized by p(0 | ℓ) and ℓ. Model p̃2468
was fitted individually to shortest, medial and longest

struts using weighted least squares.

No general model for strut lengths smaller than
x50 could be found, as in this region the central
plateaus start to grow. We also observed, that only
struts smaller than x30 could be reliably modeled by
a two-parameter model. However, for all but q0,10 the
difference between the best two-parameter and the
best three-parameter model is close to two. Thus it is
only caused by the parameter penalization of theMCp-
statistic. For the three-parameter models, the smallest
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Table 1: Results of the all-subset regression analysis of model p̃2468. The best model for each qi, j is highlighted.

p-value MCp

a2 a3 a4 p̃2 p̃24 p̃26 p̃28 p̃246 p̃248 p̃268

q0,10 0.01 0.01 0 51.49 9.96 6.97 5.39 9.95 8.02 8.39

q10,20 0.23 0.37 0.19 105.53 5.25 −0.29 0.91 2.71 1.81 2.44

q20,30 0 0.01 0.01 182.96 5.26 10.45 20.47 7.86 7.16 11.93

q30,40 0.41 0.76 0.69 34.88 17.24 8.86 3.91 1.16 1.10 1.69

q40,50 0.53 0.51 0.12 30.72 31.12 33.58 33.38 3.45 1.44 1.40

q50,60 0 0.93 0.10 268.99 94.58 153.27 194.32 3.70 1.01 9.50

q60,70 0 0.49 0.13 655.29 177.45 316.58 419.45 3.25 1.47 27.63

q70,80 0 0.98 0.01 1500.08 251.10 530.68 759.55 7.15 1.00 35.94

q80,90 0 0.65 0.03 2741.50 270.72 713.66 1106.94 5.57 1.21 58.42

q90,100 0.42 0 0 5786.65 247.43 876.88 1616.74 94.69 59.40 1.65

MCp-values were mainly obtained by p̃248. The only

exception is q40,50, but with a negligible difference.

For strut lengths greater than x50, with the

exception of q90,100, p̃248 yielded the smallest

deviations from the initial model. This behavior is

backed by the p-values and the observation that long

struts tend to have the same shape: a wide flat plateau

in the center which steeply rises towards the nodes.

Only for the 10% longest struts the plateau was

captured better by including ξ̃ 6 instead of ξ̃ 4. This

behavior is expected as the coefficients of higher order

variables are negative and thus serve as penalization to

fit wide plateaus better (cf. Table 2).

Note that in the literature (Kanaun and Tkachenko

(2008, Eq. 51) – Eq. 16; van Merkerk (2002, Eq. 4.1)

– Eq. 17; Jang et al. (2008, Eq. 1) – Eq. 18) the

following subsets of p̃2468 have already been proposed

to describe the varying strut thickness:

p̃2(ξ̃ ) = a1ξ̃ 2+1, (16)

p̃6(ξ̃ ) = a3ξ̃ 6+1, (17)

p̃24(ξ̃ ) = a2ξ̃ 4+a1ξ̃ 2+1. (18)

All these models assume that the strut thickness scales

with length. Here, however, p̃2 and p̃6 are disqualified:

The first one by its high MCp-values and the second

one by the mandatory but missing ξ̃ 2. Among these

models only p̃24 showed a reasonable performance.

For strut lengths greater than x50 its MCp-values were

at least two times smaller than the ones reached by

the other two-parameter models (with exception of

q50,60 and q60,70 for p̃26 were it is about 1.6 and 1.8,

respectively). Thus, it can be considered as the best

two-parameter model.

In summary, the three-parameter model p̃248
yielded the best representation of the data. Its

coefficients are given in Table 2. For comparison

we also fitted a nonparametric smoothed spline

model (Green and Silverman, 1995) to each qi, j and

compared its R2-statistics with the ones of the initial

parametric model p̃2468. In all cases the values lay

within 0.94 and 0.99 with no observable differences

among the two models. As no model selection

procedure is necessary for the spline model it is a

feasible alternative to the polynomial model.

CONCLUSIONS

In this work we presented a complete method to

quantify the local strut thickness of open cell foams.

Our approach is based on the skeletonization of a

binarized µCT image of the foam structure that is

decomposed into its struts and vertices. The spherical

contact profile is obtained by evaluating the Euclidean

distance transform on every point of the skeleton that

is identified as strut.

To accurately capture the volume fraction for

struts with a nonspherical cross-sectional shape we

incorporated a correction factor for the thickness

measurements. The computation of this factor is based

on a separation of the strut segments from the nodes

in the foam. This could be avoided by employing a

distance transformation whose structuring element is

adapted to the cross-sectional shape of the struts.

Using the fitted polynomials a foam can be

modeled with the observed strut thickness (Liebscher

and Redenbach, 2012). Also the microstructure

models presented in Jang and Kyriakides (2009) or

Liebscher et al. (2012) could benefit from the new

thickness model. As they use circular cross-section

shape the new model could be readily applied. The

development of a suitable two-dimensional model in

ξ and ℓ avoiding the consideration of different length

classes is topic of our ongoing research.
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Table 2: Parameters of the polynomial model p̃248
individually fitted to the length percentile ranges qi, j.

a1 a2 a4

q0,10 1.4500 −0.2886 −19.4497

q10,20 2.5887 −0.7984 −24.3497

q20,30 3.2839 −2.3636 −10.1886
q30,40 3.0614 1.5318 −44.6902

q40,50 2.8883 3.7503 −57.7422

q50,60 2.3003 8.8237 −97.2233

q60,70 1.7494 12.8970 −126.1603
q70,80 1.2383 15.6366 −132.4259

q80,90 0.6412 18.8818 −136.8497

q90,100 0.3144 19.2832 −95.6320
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report. In: Möller T, Hamann B, Russell RD, eds.

Mathematical foundations of scientific visualization,

computer graphics, and massive data exploration,

mathematics and visualization. Math Visual 109–25.

Banhart J (2001). Manufacture, characterisation and

application of cellular metals and metal foams. Prog

Mater Sci 46:559–632.

Bertrand G (1994). Simple points, topological numbers and

geodesic neighborhoods in cubic grids. Pattern Recogn

Lett 15:1003–11.

Bertrand G, Malandain G (1994). A new characterization

of three-dimensional simple points. Pattern Recogn Lett

15:169–75.

Blum H (1967). A transformation for extracting new

descriptors of shape. In: Models for the perception of

speech and visual form. MIT Press.

Cenens V, Huis R, Chauvaux B, Dereppe JM, Gratin C,

Meyer F (1994). 3d cellular structure characterization

of flexible polyurethane foam. In: Kumar V, Seeler

KA, eds., Cellular and microcellular materials, vol. 53.

ASME, 29–44.

Chaussard J, Couprie M, Talbot H (2010). Robust

skeletonization using the discrete λ -medial axis. Pattern

Recogn Lett 32:1384–94.

Chazal F, Lieutier A (2005). The λ -medial axis. Graph

Models 67:304–31.

Couprie M (2012). Euclidean skeletons. http://www.esiee.

fr/∼coupriem/es/. Accessed 10 June 2012.

Couprie M, Bertrand G (2009). New characterizations of

simple points in 2D, 3D, and 4D discrete spaces. IEEE

T Pattern Anal 31:637–48.

Couprie M, Coeurjolly D, Zrour R (2007). Discrete bisector

function and Euclidean skeleton in 2D and 3D. Image

Vision Comput 25:1543–56.

Davies SL, Neath AA, Cavanaugh JE (2006). Estimation

optimality of corrected AIC and modified Cp in linear

regression. Int Stat Rev 74:161–8.

Evako AV (2011). Characterizations of simple points,

simple edges and simple cliques of digital spaces:

One method of topology-preserving transformations of

digital spaces by deleting simple points and edges.

Graph Models 73:1–9.

Fraunhofer ITWM (2012). MAVI – Modular algorithms for

volume images. http://www.mavi-3d.de/. Accessed 10

June 2012.

Fujikoshi Y, Satoh K (1997). Modified AIC and Cp in

multivariate linear regression. Biometrika 84:707–16.
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