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ABSTRACT

Size Theory was proposed in the early 90’s as a geometrical/topological approach to the problem of Shape
Comparison, a very lively research topic in the fields of Computer Vision and Pattern Recognition. The
basic idea is to discriminate shapes by comparing shape properties that are provided by continuous functions
valued in R, called measuring functions and defined on topological spaces associated to the objects to be
studied. In this way, shapes can be compared by using a descriptor named size function, whose role is to
capture the features described by measuring functions and represent them in a quantitative way. However,
a common scenario in applications is to deal with multidimensional information. This observation has led
to considering vector-valued measuring functions, and consequently the multidimensional extension of size
functions, namely the k-dimensional size functions. In this work we survey some recent results about size
functions in this multidimensional setting, with particular reference to the localization of their discontinuities.
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INTRODUCTION

Shape Analysis and Comparison are probably

two of the most challenging issues in the fields

of Computer Vision, Computer Graphics, Image

Analysis and Pattern Recognition. Shape models

are characterized by a considerable amount of

visual, semantic and digital data, and therefore the

development of methods able to extract the most

relevant properties of a shape is necessary when

dealing with such an information. Recently, an

increasing interest has been devoted to methods

deriving from Topological Persistence, giving

relevance to consider the topological features of a

shape with respect to some geometrical properties

conveyed by real functions defined on the shape

itself (Frosini and Landi, 1999; Carlsson et al., 2005;

Cohen-Steiner et al., 2005). In this context, Size

Theory was introduced in the early 90’s as a

geometrical/topological approach to the problem of

Shape Analysis and Comparison, studying the concept

of size function, a mathematical tool able to capture

the qualitative aspects of a shape and represent them

in a quantitative way. More precisely, the main idea

in Size Theory is to model a shape by means of a

topological space M , endowed with a continuous

function ϕ called measuring function. Such a function

is chosen according to applications and describes the

features considered relevant for shape characterization.

In this way, the size pair (M ,ϕ) can be seen as

a representation of a given shape with respect to

the properties expressed by the selected measuring

function ϕ . Part of the qualitative information

contained in (M ,ϕ) is then quantitatively stored

in the associated size function ℓ(M ,ϕ), describing

some topological attributes that persist in the sublevel

sets of M induced by ϕ . Following this approach,

comparing two shapes can be reduced to the simpler

comparison of the associated size functions, making

use of a suitable distance as, e.g., thematching distance

(d’Amico et al., 2003; 2006; 2010). In the context of

Algebraic Topology, an analogous notion to the one of

size function has been developed under the name of

size homotopy group (Frosini and Mulazzani, 1999).

More recently, similar ideas have been re-

proposed by Persistent Homology according to a

homological approach (Edelsbrunner et al., 2002;

Edelsbrunner and Harer, 2008). In this setting,

the concept of size function coincides with the

dimension of the 0-th multidimensional persistent

homology group, i.e., the 0-th rank invariant

(Carlsson and Zomorodian, 2007).

Since their introduction, size functions have

been extensively studied and applied to concrete

problems in the fields of Computer Vision and

Graphics, Image Analysis and Pattern Recognition,

with particular reference to the 1-dimensional setting,

i.e., to the case of measuring functions taking

values in R (Verri et al., 1993; Uras and Verri, 1997;

Dibos et al., 2004; Cerri et al., 2006; Biasotti et al.,

2008c). Similarly, Persistence Homology was

initially developed in a 1-dimensional version (i.e.,

studying the topological evolution of a one-parameter
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increasing family of spaces), with applications
in shape description (Carlsson et al., 2005), hole
detection in sensor network (de Silva and Ghrist,
2007) and data simplification (Bubenik and Kim,
2007).

However, a common scenario in applications
is to deal with multidimensional information: This
can be easily understood if we consider, e.g., the
representation of color in the RGB model. Other
similar examples can be found in the context of
computational biology, in medical environments, as
well as in scientific simulations of natural phenomena.
These observations had led to pay close attention to the
study of Topological Persistence in a multidimensional
setting (Frosini and Mulazzani, 1999; Biasotti et al.,
2007; Carlsson and Zomorodian, 2007; Biasotti et al.,
2008a; Edelsbrunner and Harer, 2008; Ghrist, 2008;
Carlsson, 2009). Referring to Size Theory, the term
multidimensional is related to considering vector-
valued measuring functions, and consequently the
multidimensional extension of size functions, namely
the k-dimensional size functions.

In this paper we review some recent results
concerning the theory of size functions associated
to measuring functions taking values in R

k

(Biasotti et al., 2007; 2008a), with particular reference
to the study of their structure and to the localization
of their discontinuities (Cerri and Frosini, 2008).
Indeed, this last research line is a necessary step
toward the development of efficient algorithms for the
computation of multidimensional size functions and
their application to concrete problems.

MULTIDIMENSIONAL SIZE THEORY

In this section we introduce the basic definitions
and results about size functions, confining ourselves
to those we consider relevant to the survey purposes
of this paper. For further details about Size Theory,
the reader is referred to Frosini and Mulazzani (1999);
Biasotti et al. (2007; 2008a;b).

The main idea underlying the notion of (k-
dimensional) size function is to study a given shape
by performing a topological exploration of a suitable
topological space M , with respect to some geometric
properties provided by an R

k-valued continuous
function ~ϕ = (ϕ1, . . . ,ϕk) defined on M . Under these
assumptions, the size function ℓ(M ,~ϕ) is then a stable
and compact descriptor of the topological changes
occurring in the lower level sets {P ∈ M : ϕi(P) ≤
ti, i = 1, . . . ,k} as~t = (t1, . . . , tk) varies in R

k.

In the classical formulation of Size Theory, M
is required to be a non-empty, compact and locally

connected Hausdorff space, and ~ϕ : M → R
k is

a continuous function. However, since some of the
results we are going to present imply differential
considerations, for the sake of simplicity we prefer
here to restrict our hypothesis, by assuming that M
is a closed C1 Riemannian manifold, endowed with a
C1 function ~ϕ = (ϕ1, . . . ,ϕk) : M → R

k.

In the context of Size Theory, any pair (M ,~ϕ),
with M and ~ϕ = (ϕ1, . . . ,ϕk) : M → R

k satisfying
the previous assumptions, is called a size pair. The
function ~ϕ is said to be a k-dimensional measuring

function. We define the following relations ¹ and
≺ in R

k: for ~x = (x1, . . . ,xk) and ~y = (y1, . . . ,yk),
we shall write ~x ¹ ~y (resp. ~x ≺ ~y) if and only if
xi ≤ yi (resp. xi < yi) for every index i = 1, . . . ,k.
Moreover, R

k will be endowed with the usual max-
norm: ‖(x1,x2, . . . ,xk)‖∞ = max1≤i≤k |xi|. Now we are
ready to introduce the concept of size function for a
size pair (M ,~ϕ). The open set {(~x,~y) ∈ R

k × R
k :

~x ≺~y} will be denoted by ∆+. For every k-tuple ~x =
(x1, . . . ,xk) ∈ R

k, we shall define the set M 〈~ϕ ¹~x〉 as
{P ∈ M : ϕi(P) ≤ xi, i = 1, . . . ,k}.
Definition 1.1. We call the (k-dimensional) size

function associated with the size pair (M ,~ϕ) the
function ℓ(M ,~ϕ) : ∆+ → N, defined by setting

ℓ(M ,~ϕ)(~x,~y) equal to the number of connected

components in the set M 〈~ϕ ¹~y〉 containing at least
one point of M 〈~ϕ ¹~x〉.
Remark 1.2. The concept of size function is
strongly related to the ones of persistent homology
group and rank invariant (Edelsbrunner et al., 2002;
Carlsson and Zomorodian, 2007). More precisely, the
(multidimensional) size function ℓ(M ,~ϕ) coincides
with the 0-th rank invariant associated with the
(multi)filtration induced on M by ~ϕ . For a formal
definition of rank invariant the reader is referred to
Carlsson and Zomorodian (2007).

In what follows, the case of measuring functions
taking value in R

k will be addressed by using the term
“k-dimensional”.

Example 1.3 (The particular case k = 1). Close
attention should be paid to the particular framework
of measuring functions taking values in R, i.e., to
the 1-dimensional case. Indeed, Size Theory has
been widely developed in this setting (Biasotti et al.,
2008b), proving that each 1-dimensional size function
admits a compact representation as a formal series
of points and lines of R

2 (Frosini and Landi, 2001).
As a consequence of this peculiar structure, a
suitable matching distance between 1-dimensional
size functions can be easily introduced, showing the
stability of these descriptors with respect to such
a distance (d’Amico et al., 2003; 2010). All these
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properties make the concept of 1-dimensional size

function central in the approach to the k-dimensional

case proposed in Biasotti et al. (2008a).

According to the notations used in the literature

about the case k = 1, the symbols ~ϕ , ~x, ~y will be

replaced respectively by ϕ , x, y.

When referring to a (1-dimensional) measuring

function ϕ : M → R, the size function ℓ(M ,ϕ)

associated with (M ,ϕ) contains information about

the pairs (M 〈ϕ ≤ x〉,M 〈ϕ ≤ y〉), where M 〈ϕ ≤ t〉
is defined by setting M 〈ϕ ≤ t〉= {P ∈M : ϕ(P)≤ t}
for t ∈ R.

Before going on, we observe that for k = 1, the

domain ∆+ of a size function reduces to be the open

subset of the real plane given by {(x,y) ∈ R
2 : x < y}.

Fig. 1 shows an example of a size pair (M ,ϕ)
together with the size function ℓ(M ,ϕ). On the left

(Fig. 1(a)) the considered size pair (M ,ϕ) can be

found, where M is the curve drawn by a solid line,

and ϕ is the ordinate function. On the right (Fig. 1(b))
the associated 1-dimensional size function ℓ(M ,ϕ) is

depicted.
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Fig. 1. (a) The topological space M and the

measuring function ϕ . (b) The associated size function
ℓ(M ,ϕ).

As can be seen, the domain ∆+ = {(x,y) ∈ R
2 :

x < y} is divided into regions by solid lines. These

lines represent the discontinuities of ℓ(M ,ϕ), which are

located by the following theorem:

Theorem 1.4. Let M be a closed C1 Riemannian

manifold, and let ϕ : M → R be a C1 measuring

function. If (x̄, ȳ) is a discontinuity point for ℓ(M ,ϕ),

then either x̄ or ȳ or both are critical values for ϕ .

Each region of ∆+ is labeled by a number,

coinciding with the constant value that ℓ(M ,ϕ) takes in

the interior of that region. For example, let us compute

the value of ℓ(M ,ϕ) at the point (c,d). By Definition

1.1 in the case k = 1, it is sufficient to count how many

of the three connected components in the sublevel

M 〈ϕ ≤ d〉 contain at least one point of M 〈ϕ ≤ c〉.
It can be easily checked that ℓ(M ,ϕ)(c,d) = 2.

Due to their typical structure, it has been proved
that the information conveyed by a 1-dimensional size
function can be combinatorially stored in a formal
series of points and lines (Frosini and Landi, 2001).
Roughly speaking, this can be done by observing that
each 1-dimensional size function is representable by
means of a linear combination (with natural numbers
as coefficients) of characteristic functions associated
to triangles, possibly unbounded, lying on the domain
∆+. Indeed, the bounded triangles are of the form
{(x,y) ∈ ∆+ : α ≤ x < y < β}, while the unbounded
ones are of the form {(x,y) ∈ ∆+ : η ≤ x < y)}.
Hence, a simple and compact representation can be
provided if one considers the formal series obtained
by associating a triangular set given by {(x,y) ∈ ∆+ :
α ≤ x < y < β} to the point (α,β ), and a triangular
set given by {(x,y) ∈ ∆+ : η ≤ x < y)} to the point at
infinity (η ,+∞). The points of a formal series having
finite coordinates are called proper cornerpoints, while
the ones with a coordinate at infinity are named
cornerpoints at infinity or cornerlines. For example,
the size function ℓ(M ,ϕ) shown in Fig. 1(b) admits the
representation by formal series given by r+ p1 + p2 +
p3+ p4, where r is the only cornerpoint at infinity, with
coordinates (0,+∞).

According to the 1-dimensional setting, the
problem of comparing two size pairs can be easily
translated into the simpler one of comparing sets
of points, via the representation by formal series
of the associated 1-dimensional size functions. In
d’Amico et al. (2003; 2010), the matching distance

dmatch has proven to be a suitable distance between
these descriptors. In plain words, the matching
distance dmatch measures the cost of moving the points
of a formal series onto the points of another one, with
respect to the max-norm. An application of dmatch is
shown in Fig. 2(c).
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Fig. 2. (a) The size function corresponding to

the formal series r + p + q. (b) The size function

corresponding to the formal series r′ + p′. (c) The

matching between the two formal series, realizing the

matching distance between the two size functions.

As can be seen in Fig. 2, different 1-dimensional
size functions may in general have a different number
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of cornerpoints. Therefore dmatch allows a proper

cornerpoint to be matched to a point of the diagonal:

this matching can be interpreted as the deletion of a

proper cornerpoint. Moreover, we stress that the dmatch

has proven to be stable with respect to perturbations

of the measuring functions (d’Amico et al., 2003;

2010), making this framework suitable when coping

with applications in Shape Comparison. For a formal

definition and further details about the matching

distance the reader is referred to d’Amico et al. (2006;

2010).

Remark 1.5. The notion of dmatch is strictly

related to the ones of bottleneck distance, used in

Cohen-Steiner et al. (2005) to prove the stability of

persistence diagrams, and Hausdorff distance. More

precisely, dmatch reduces to be the bottleneck distance

under the restriction that the measuring functions

are tame (we recall that a continuous real function

f : M → R is tame if it has a finite number of

homological critical values and the homology groups

Hk( f
−1(−∞,a]) are finite-dimensional for all k ∈ Z

and a ∈ R). The matching distance reduces to be

the Hausdorff distance when considering left- and

right-total relations instead of bijections between

cornerpoints.

REDUCTION TO THE

1-DIMENSIONAL CASE

In this section we review the approach to the

k-dimensional extension of size functions proposed

in Biasotti et al. (2008a). In that work, the authors

show that the case k > 1 can be reduced to the 1-

dimensional setting by a change of variable and the

use of a suitable foliation. In particular, they prove

that a parameterized family of half-planes in R
k ×

R
k can be given, such that the restriction of a k-

dimensional size function ℓ(M ,~ϕ) to each of these half-

planes turns out to be a particular 1-dimensional size

function. This approach finds motivations in the fact

that generalizing to an arbitrary dimension (i.e., to

the case k > 1) the concepts of proper cornerpoint

and cornerpoint at infinity seems not to be trivial.

We recall that these notions, defined in the case

of 1-dimensional size functions, play a central role

in the introduction of the representation by formal

series. Consequently, at a first glance it seems not

possible to provide the multidimensional analogue of

the matching distance dmatch and therefore it is not

clear how to obtain stability under perturbations of

the measuring functions. On the other hand, all these

problems can be overcome via the results we are going

to survey.

Before proceeding, we need to introduce some
further notation.

For every unit vector ~l = (l1, . . . , lk) of R
k such

that li > 0 for i = 1, . . . ,k, and for every vector ~b =

(b1, . . . ,bk) of R
k such that ∑k

i=1 bi = 0, the pair (~l,~b)
is said to be admissible. The set of all admissible pairs
in R

k ×R
k is denoted by Admk. Given an admissible

pair (~l,~b), the half-plane π(~l,~b) of R
k×R

k is defined by

the following parametric equations:

π(~l,~b) :

{

~x = s~l+~b

~y = t~l+~b
,

for s, t ∈ R, with s < t.

Remark 2.1. It can be easily proved that the collection

of half-planes
{

π(~l,~b) : (
~l,~b) ∈ Admk

}

is a foliation of

∆+, hence for every point of the domain ∆+ there exists

one and only one half-plane π(~l,~b), with (~l,~b) ∈ Admk,

containing the point itself. Moreover, the half-plane

π(~l,~b) depends continuously on the pair (~l,~b).

We are now ready to present the main result in
the approach to the multidimensional case proposed in
Biasotti et al. (2008a):

Theorem 2.2 (Reduction Theorem). Let (~l,~b) be an

admissible pair, and let F
~ϕ

(~l,~b)
: M → R be defined by

setting

F
~ϕ

(~l,~b)
(P) = max

i=1,...,k

{

ϕi(P)−bi

li

}

.

Then, for every (~x,~y) = (s~l +~b, t~l +~b) ∈ π(~l,~b) the

following equality holds:

ℓ(M ,~ϕ)(~x,~y) = ℓ
(M ,F

~ϕ

(~l,~b)
)
(s, t) .

In the following, we shall use the symbol F
~ϕ

(~l,~b)
in

the sense of the Reduction Theorem 2.2.

Roughly speaking, the Reduction Theorem 2.2
states that, on each half-plane of the foliation, the
restriction of a given multidimensional size function
coincides with a particular size function in two scalar
variables, i.e., a 1-dimensional one. A first important
consequence is the possibility of representing a
multidimensional size function ℓ(M ,~ϕ) by a collection
of formal series of points and lines, following the
machinery described in Example 1.3 for the case

k = 1. Indeed, each admissible pair (~l,~b) can be
associated with a formal series σ(~l,~b) describing the

1-dimensional size function ℓ
(M ,F

~ϕ

(~l,~b)
)
. Therefore, on

each half-plane π(~l,~b) the matching distance between

1-dimensional size functions can be applied, showing

22



Image Anal Stereol 2010;29:19-26

that it is stable with respect to perturbations of
the multidimensional measuring functions and to the
choice of the leaves of the foliation (Biasotti et al.,
2008a, Prop. 2 and 3). These stability properties lead
to the definition of a distance Dmatch(ℓ(M ,~ϕ), ℓ(N ,~ψ))
between two multidimensional size functions ℓ(M ,~ϕ)

and ℓ(N ,~ψ), given by Dmatch(ℓ(M ,~ϕ), ℓ(N ,~ψ)) =
sup(~l,~b)∈Admk

mini=1,...,k li · dmatch(ℓ(M ,F
~ϕ

(~l,~b)
)
, ℓ

(N ,F
~ψ

(~l,~b)
)
)

(Biasotti et al., 2008a, Def. 8).

Remark 2.3. Let us observe that choosing a non-
empty and finite subset A ⊆ Admk, and substituting
sup(~l,~b)∈Admk

with max(~l,~b)∈A in the definition of

Dmatch(ℓ(M ,~ϕ), ℓ(N ,~ψ)), we obtain a computable
pseudodistance between k-dimensional size functions,
that is stable and hence suitable for applications.

Before going on, we now provide an example
showing how the Reduction Theorem 2.2 can be
applied for comparing k-dimensional size functions.

Example 2.4. In R
3 take Q = [−1,1] × [−1,1] ×

[−1,1] and the sphere S of equation x2 + y2 + z2 = 1.

Let also ~Φ : R
3 → R

2 be the C1 function taking each
point (x,y,z) to the pair (x2,z2). Now consider the size
pairs (M ,~ϕ) and (N , ~ψ), where M is the “smoothed
version” of ∂Q represented in Fig. 3, N = S and ~ϕ ,
~ψ are the restrictions of ~Φ to M and N , respectively.
In order to compare the (2-dimensional) size functions
ℓ(M ,~ϕ) and ℓ(N ,~ψ), we are interested in studying the

foliation in half-planes π(~l,~b), where
~l = (cosθ ,sinθ)

with 0 < θ < π/2, and ~b = (a,−a) with a ∈ R. Any
such half-plane is given by











x1 = scosθ +a

x2 = ssinθ −a

y1 = t cosθ +a

y2 = t sinθ −a

,

with s, t ∈ R, s < t. Fig. 3 shows the size functions

ℓ
(M ,F

~ϕ

(~l,~b)
)
and ℓ

(N ,F
~ψ

(~l,~b)
)
, for θ = π/4 and a= 0, i.e.,~l =

(
√
2/2,

√
2/2) and ~b = (0,0). In this case we obtain

F
~ϕ

(~l,~b)
=
√
2max{ϕ1,ϕ2}=

√
2max{x2,z2} and F~ψ

(~l,~b)
=

√
2max{ψ1,ψ2} =

√
2max{x2,z2}. Therefore, the

Reduction Theorem 2.2 implies that, for every
(x1,x2,y1,y2) ∈ π(~l,~b), we have

ℓ(M ,~ϕ)(x1,x2,y1,y2) = ℓ(M ,~ϕ)

(

s√
2
,
s√
2
,
t√
2
,
t√
2

)

= ℓ
(M ,F

~ϕ

(~l,~b)
)
(s, t),

ℓ(N ,~ψ)(x1,x2,y1,y2) = ℓ(N ,~ψ)

(

s√
2
,
s√
2
,
t√
2
,
t√
2

)

= ℓ
(N ,F

~ψ

(~l,~b)
)
(s, t) .

The matching distance dmatch(ℓ(M ,F
~ϕ

(~l,~b)
)
, ℓ

(N ,F
~ψ

(~l,~b)
)
)

equals
√
2− ε − (1/

√
2) =

√
2/2− ε (1 ≫ ε > 0, ε

depending on the “smoothness level” of M ), i.e., the
cost of moving the point of coordinates (0,

√
2− ε)

onto the point of coordinates (0,1/
√
2), computed

with respect to the max-norm. The points (0,
√
2− ε)

and (0,1/
√
2) are representative of the characteristic

triangles of the size functions ℓ
(M ,F

~ϕ

(~l,~b)
)
and ℓ

(N ,F
~ψ

(~l,~b)
)
,

respectively. Note that the pseudodistance we obtained
from Dmatch (cf. Remark 2.3) by computing the

matching distance dmatch for ~l = (
√
2/2,

√
2/2) and

~b = (0,0), equals to
√
2
2

· (
√
2
2

− ε). This implies
that, even by considering just one half-plane of
the foliation, it is possible to effectively compare
multidimensional size functions. Let us conclude
by observing that ℓ(M ,ϕ1) ≡ ℓ(N ,ψ1) and ℓ(M ,ϕ2) ≡
ℓ(N ,ψ2). In other words, the multidimensional size

functions, with respect to ~ϕ, ~ψ , are able to discriminate
the cube and the sphere, while both the 1-dimensional
size functions, with respect to ϕ1,ϕ2 and ψ1,ψ2,
cannot do that. The higher discriminatory power of
multidimensional size functions provides a further
motivation for their introduction and use.

The comparison procedure based on Theorem
2.2 and illustrated in Example 2.4 is the core of
the machinery developed for concrete applications
in the context of Shape Analysis. For example,
in Biasotti et al. (2007) k-dimensional size functions
are used for comparing and retrieving 2- and 3-
dimensional data, using both vectorial (i.e., triangle
meshes) and raster (voxel images) representations.
Indeed, in that work the authors consider two different
databases of 280 surface models and of 420 volume
models, respectively. In order to compare and retrieve
the surface models, each of them is equipped with the
same 2-dimensional measuring function, computing
the pseudodistance induced by Dmatch (cf. Remark 2.3)
between the related 2-dimensional size functions over
4 different half-planes of the foliation described in
Example 2.4. The same approach is used to compare
the volume models, but choosing a 3-dimensional
measuring function instead of a 2-dimensional one,
and computing the restrictions of the outcoming 3-
dimensional size functions over a single half-plane of
∆+ ⊆ R

3×R
3. The promising results obtained in both

the applications suggest that Multidimensional Size
Theory can be effectively used to analyze and compare
3D digital shapes (represented by surface or volume
models) equipped by vector-valued functions.

For further details about the experimental results
described here see Biasotti et al. (2007). Other
experiments can be found in Biasotti et al. (2008a).
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Fig. 3. The topological spaces M and N and the size functions ℓ
(M ,F

~ϕ

(~l,~b)
)
, ℓ

(N ,F
~ψ

(~l,~b)
)
associated with the half-

plane π(~l,~b), for
~l = (

√
2
2

,
√
2
2

) and~b = (0,0).

DISCONTINUITIES IN THE

MULTIDIMENSIONAL CASE

The approach to the case k > 1 reviewed in the

previous section has revealed to be useful both in

applying multidimensional size functions to concrete

problems and in solving some questions related to their

intrinsic structure. Indeed, the theoretical machinery

introduced in Biasotti et al. (2008a) has been used in

a recent work in order to study the localization of

the discontinuities for multidimensional size functions.

More precisely, in Cerri and Frosini (2008) it has

been proved that a generalization of Theorem 1.4

holds when k > 1, giving a necessary condition for a

point (~x,~y) ∈ ∆+ to be a discontinuity point for a k-

dimensional size function ℓ(M ,~ϕ). In this section we

review the main considerations leading to this result,

which is stated in Theorem 3.3. For further details the

reader is referred to Cerri and Frosini (2008).

Consider the size pair (M ,~ϕ) and the associated

multidimensional size function ℓ(M ,~ϕ). From now to

Theorem 3.3 an admissible pair (~l,~b) ∈ Admk will be

fixed and the 1-dimensional size function ℓ(M ,F) will

be considered, where F(P) = maxi=1,...,k{(ϕi(P) −
bi)/li} for all P ∈ M . The functions F and ℓ(M ,F)

will be said the (1-dimensional) measuring function

and the size function corresponding to the half-plane

π(~l,~b), respectively.

In what follows, the symbol ℓ(M ,~ϕ)(·,~y) will

denote the function taking each k-tuple ~x ≺ ~y to the

value ℓ(M ,~ϕ)(~x,~y). An analogous convention will hold

for the symbol ℓ(M ,~ϕ)(~x, ·).
The first step toward claiming Theorem 3.3

consists in the observation that a slightly modified

version of Theorem 1.4 holds for the 1-dimensional

size function ℓ(M ,F) associated to the half-plane

π(~l,~b). Indeed, such an adaptation is due to the fact

that the 1-dimensional measuring function F is, in

general, not C1. The idea is then to introduce an

approximation of F by a sequence of C1 functions

(Fp). In this way, Theorem 1.4 can be applied, getting

a differential necessary condition, depending on the

half-plane π(~l,~b), for the discontinuity points of the

functions ℓ(M ,Fp). Due to the stability properties of the

matching distance dmatch between 1-dimensional size

functions, it is possible to prove that the differential

condition passes to the limit p→ +∞, and therefore it

also holds for the discontinuity points of ℓ(M ,F).

This first result can then be extended to the

discontinuities of the multidimensional size function

ℓ(M ,~ϕ). Indeed, in Cerri and Frosini (2008) it is shown

that a correspondence exists between the discontinuity

points of ℓ(M ,F) and the ones of ℓ(M ,~ϕ). This can be

proved by applying the Reduction Theorem 2.2 and the

stability of dmatch with respect to the choice of the half-

planes foliating ∆+.

Finally, the result given in Theorem 3.3 refines

the differential necessary condition obtained for the

discontinuity points of ℓ(M ,~ϕ), by removing the

dependance on the foliation of ∆+. In order to do this,

in Cerri and Frosini (2008) the following definitions

of pseudocritical point and pseudocritical value for a

vector-valuedC1 function have been used:

Definition 3.1. Let ~χ : M → R
h be a C1 function. A

point P ∈ M is said to be a pseudocritical point for ~χ
if the convex hull of the gradients ∇χi(P), i = 1, . . . ,h,
contains the null vector, i.e., there exist λ1, . . . ,λh ∈ R

such that ∑h
i=i λi · ∇χi(P) = 0, with 0 ≤ λi ≤ 1 and

∑h
i=1 λi = 1. If P is a pseudocritical point of ~χ , then

~χ(P) will be called a pseudocritical value for ~χ .

Remark 3.2. Definition 3.1 corresponds to the

Fritz John necessary condition for optimality in

Nonlinear Programming (Bazaraa et al., 1993). For

further references see Smale (1973). The concept of

the pseudocritical point is strongly related also to

the ones of Jacobi Set (Edelsbrunner and Harer, 2002)
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and generalized gradient (Clarke, 1983). In literature,

pseudocritical points are also called Pareto-critical

points.

Roughly speaking, Definition 3.1 states that a point

P ∈ M is pseudocritical for the function ~χ : M → R
h

if, moving from P, it is not possible to “choose a

direction” on M allowing one to decrease at the same

time each component of ~χ(P) (with respect to a first

order approximation of ~χ). According to Definition

3.1 and considering a suitable projection ρ : Rk → R
h,

with ρ(~x) = (xi1 , . . . ,xih) for some indices i1, . . . , ih,
the next theorem has been proved in Cerri and Frosini

(2008), locating the discontinuity points of ℓ(M ,~ϕ) and

avoiding any reference to the half-planes π(~l,~b):

Theorem 3.3. Let (~x,~y) ∈ ∆+ be a discontinuity

point for ℓ(M ,~ϕ). Then at least one of the following

statements holds:

(i) ~x is a discontinuity point for ℓ(M ,~ϕ)(·,~y) and

then a projection ρ exists such that ρ(~x) is a

pseudocritical value for ρ ◦~ϕ;

(ii) ~y is a discontinuity point for ℓ(M ,~ϕ)(~x, ·) and

then a projection ρ exists such that ρ(~y) is a

pseudocritical value for ρ ◦~ϕ .

In other words, the result claimed in Theorem 3.3

states that a discontinuity point for a multidimensional

size function has at least one pseudocritical coordinate

up to a suitable projection, under the hypothesis that

the considered measuring function is C1. We observe

that this result implies several relevant consequences.

First, it contributes to clarifying the structure and

simplifying the computation of multidimensional size

functions. In order to explain this point let us consider

the case of a compact smooth manifold M endowed

with a smooth function ~ϕ = (ϕ1,ϕ2) : M → R
2. It

is immediate to verify that all pseudocritical points

belong to the Jacobi set of ~ϕ , that is the set

where the gradients ∇ϕ1 and ∇ϕ2 are parallel. This

implies (Edelsbrunner and Harer, 2002) that in the

generic case the pseudocritical points belong to a

1-submanifold J of M (in local coordinates such

a manifold is determined by the vanishing of the

Jacobian of ~ϕ). For the computation of J we refer to

Edelsbrunner and Harer (2002). Now, let P be the set

of pseudocritical values for ~ϕ , and let C1 (respectively

C2) be the set of critical values for ϕ1 (resp. ϕ2).

Following these notations, if we assume that A1 =
C1 × R

3, A2 = R × C2 × R
2, B1 = R

2 × C1 × R,

B2 = R
3×C2,P1 = P×R

2 andP2 = R
2×P , then

Theorem 3.3 allows us to claim that all discontinuity

points (x1,x2,y1,y2) of the size function ℓ(M ,~ϕ) belong

to the set K = ∆+∩(A1∪A2∪B1∪B2∪P1∪P2).

In the light of this new information, we
can imagine the possibility of constructing new

algorithms to efficiently compute multidimensional

size functions. Let us consider the connected

components in which the domain of ℓ(M ,~ϕ) is divided

by the set K . Since size functions are locally constant
at each point of continuity (we recall that they are

natural-valued), we immediately obtain that ℓ(M ,~ϕ) is

constant at each of those connected components. It

follows that the computation of ℓ(M ,~ϕ) just requires
the computation of its value at only one point for each

connected component. These observations open the

way to new and more efficient methods of computation

for multidimensional size functions.

Our results also make new pseudodistances
between size pairs computable in an easier way.

Let us provide a simple example. Consider the two

size pairs (M ,~ϕ), (N , ~ψ) introduced in Example
2.4. Let also P~ϕ (respectively P~ψ ) be the set of

pseudocritical values for ~ϕ (resp. ~ψ). It can be
easily verified that P~ϕ and P~ψ are respectively the

subsets of R
2 represented in Fig. 4(a) and Fig. 4(b).

It is trivial to check that the Hausdorff distance
between P~ϕ and P~ψ approximates the value 1√

2
(the

approximation depending on the “smoothness level”
of M ), thus giving a measure of the (dis)similarity
between (M ,~ϕ) and (N , ~ψ).

CONCLUSIONS

In this paper we surveyed recent advances in the
theory of multidimensional size functions, spanning
the main results leading to their application to concrete
problems in the fields of Computer Vision and
Graphics, Image Analysis and Pattern Recognition.
Close attention has been paid also to the review of
the most interesting theoretical properties concerning
these shape descriptors, with particular reference to
the localization of their discontinuities. Indeed, this
last research line appears to be promising in improving
the computation and the use of multidimensional size
functions in the context of concrete applications.
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