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ABSTRACT

In this paper, the parallel sk of the facets (d — 1)-faces) of a stationary Poisson-Voronoi tessellatioRn
andR3 is investigated. An analytical formula for the sphericahzwt distribution function of the tessellation
allows for the derivation of formulae for the volume densityd the specific surface areaXf. The densities

of the remaining intrinsic volumes are studied by simulatidhe results are used for fitting a dilated Poisson-
Voronoi tessellation to the microstructure of a closed4oam.

Keywords: contact distribution function, intrinsic voles, parallel set, surface density, stochastic geometry.

INTRODUCTION process. A huge number of analytic results for
geometric characteristics of this model is available (see
Random tessellations are widely used to modepkabeet al.(2000 for an overview). Here, we will use
cellular or polycrystalline materials such as foamsexplicit formulae for the spherical contact distribution
or sintered ceramics (see,g, Costeretal. (2009;  function to derive formulae for the volume and surface
Redenbacl{2009; Ribeiro-Ayeh(2009; Telleyetal.  area density of the dilated system of cell facets. These
(19996). For instance, the system of facets of a randongharacteristics, which are easy to estimate and to
tessellation can model the wall system in closedinterpret, are sufficient for the estimation of the model
cell foams or the grain boundaries in polycrystallineparameters, the intensify of the Poisson process and
materials (see Fidl for examples of such materials). the dilation radiusR. The densities of the remaining
Random tessellations are space-filling cell systems biytrinsic volumes can then be used to validate a fitted

In contrast, real materials typically consist of two gjmulation.

components such that the facets have a certain

thickness. Models for such microstructures can be The paper is organised as follows: First, we give
obtained using the parallel set (or dilation) of thean introduction into the concepts and the notation used
facets of the tessellation’s cells. Using these modeldD this paper. Then we obtain some results for the
relations between the microstructure of a materiagontact distribution function of the random closed set
and its macroscopic properties can be investigatedr formed by the dilated facet system of a stationary
(Redenbach2009. Poisson-Voronoi tessellation. In the following section,
the densities of the intrinsic volumes dir are
given as functions of the dilation radil® Section
“Application” is concerned with the application of the
obtained results to the modelling of cellular materials.
We conclude with a discussion of the results and an
outlook on possible future work.

DILATED POISSON-VORONOI
TESSELLATIONS

Fig. 1. Sectional microscopic image of anp®j sinter
material (left) and visualisation of a tomographic  Throughout this paper we are working it
image of a closed polymer foam (right). dimensional Euclidean spad@® equipped with the
Euclidean norm|| - ||. For x € RY and r > 0 let
A well-known tessellation model is the Voronoi b(x,r) denote the closed-dimensional ball of radius
tessellation generated by a stationary Poisson poimtcentred inx. The unit sphere iR? is denoted by
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-1, Write # for the Borel sets ifRY, A4 for the (i) if C1,Co € T andCy # C, thenCi NG, = 0,
d-dimensional Lebesgue measure, amd ; for the - _ d
(i)  UcerC=R",

surface measure & 1.
Let.# and_# be the system of closed and compact (i) T IS locally finite, i.e., f(?r every bounded ¢
convex sets iMRY, respectively. Elements of¢” are #itholds that #C € T:CNB # 0} < .
called convex bodies. Equigz with the topology of ThenT is called atessellatiorof RY. The cells ared-
closed convergencé&chneider and WeiR008 p. 18)  polytopes due to their convexity and the fact that the
and denote the corresponding system of Borel sets qBassellation is space-fillingschneider and WeiR008
F by %(F). A random closed sef is a measurable | emma 10.1.1). Denote byZ¥(C) the set of allk-
mapping from a probability space (07, 2(F)). It facesk = 0,...,d, of a d-polytopeC. The space7
is CaIIeC_I Stationary if its distribution is invariant under of all tessellations ORd can also be equipped with
translations oY the topology of closed convergence. Hence, we can
For setK € %, the intrinsic volume®(K), k = define a random tessellation as a random varixble

o,... 7d, can be defined using the Steiner formula with values in.7. Then the union of all facets,e.,
d (d—1)-faces, of the tessellation forms a random closed

t
A(K@b(0,r) =Y KV (K)rk, r>0. s€ _
kZO == LdJ F,
gd-1
Here, © denotes Minkowski additioni.e., A® B = FeFEX)
{a+b:acAbeB} for ABe %, andkg is the where.Z91(X) = ey Z91(C).
volume of thek-dimensional unit ball. Fod = 2 the

intrinsic volumes are — up to constant factors — theh The P0|Sﬁokn—Voron0| dtessellanorlll 1S maydbel
areaA — \, the boundary length. — 2V;, and the the most well-known random tessellation mode

Euler characteristioy = Vo, for d = 3 they are the (Schneider and Weil2008 Stoyanetal, 1999. It is
volumeV = V3, the surface are8= Vs, the integral of generated by the points of a stationary Poisson process
mean curvatur&! = niv;, and the Euler characteristic ¢ PY @ssigning to a point ¢ @ the cell
=V, see e. g.%chneider1993 p. 210).
X=Vo 9-% _e. 3p _) Cx,®) ={yeR": |ly—x/| < |ly—7]| for all ze ®}.
Important characteristics for stationary random

closed sets are the densities of the intrinsic volumes.
They are defined as the limits

EVK(ENTW)

In the following, let® be a stationary Poisson
process with intensity\, Vo(®) the induced Voronoi

- _ tessellation, anc the stationary random closed set
Wii(Z) = r'l‘l, Vg(rw) 7 k=0,...,d, (1) formed by the facets of \(@). ForR > 0 denote by
whereW € % is a convex body withvVg(W) > 0 =R—Z@b(0,R) = U (F®b(0,R) (2)

and E denotes expectation. A sufficient condition
for the existence of the limit is thakt is almost

iurely locally polyconvexj.e, for K € %" the set the dilated facet system of Y&®). Finally, denote
:QK can almost .surely be Yvr!tten :asOla(} flnlteby F4(0) the almost surely unique cell of Vo)
union of convex bodies, and satisfiE2 =00 < \which contains the origin. In the following, we will
o (Schneider and Weil2008 Theorem 9.2.1). Here inyestigate geometric characteristics of the random
N(X) denotes the smallest numbersuch thatX = ¢josed seEg. Realisations of this set in botk? and
KiU...UKnwithKq,...,Knh€ % R3 are shown in Fig2.

Analogously to the intrinsic volumes, their
densities have the following meaning: Fbe 2, Ax =
W 2 is the area density,n = 2\, 1 is the density of the
boundary length, angta = W o is the density of the
Euler characteristic, fal = 3, W =W, 3 is the volume
density,Sy = 2W» is the surface density (or specific
surface area)Mly = 1\, 1 is the density of the integral
of mean curvature, angy =W o is the density of the
Euler characteristic.

Denote byé the interior of the bounded sé&t C

RY. Let T be a set of bounded convex d-dimensionaFig. 2. Realisations of dilated Poisson-Voronoi
subsets oRY with tessellations irR? (left) andR? (right).

Fe.zd-1(Vo(d))
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CONTACT DISTRIBUTION For any random closed s& and a compact set

FUNCTION B € 4, the capacity functional is defined ag(B) =
UNCTIONS P(©NB # 0). It uniquely determines the distribution

Let B € # be a convex body containing the origin of® (Schnelqer and Weib00g Theorén? 2.1.3). .
and let® be a random closed set. Then thentact If B € % is a convex body containing the origin,
distribution function kg of © is defined via we have
T=(rB) =P(ZNrB # 0) = 1— P(rB C Fy4(0)) = Hg(r)

for anyr > 0. The capacity functional of the dilated

_ _ tessellation=r is related to the contact distribution
Important special cases are trgpherical contact function of the original tessellation via
distribution function H, where B = b(0,1) is the

HB(r):P<OﬂrB7é(D]0§éG)), r>0.

unit ball centred in the origin, and tHmear contact T=x(rB) =1— P(rB@b(O, R) C Fd(0)> (6)
distribution function H, where B = I(u) is a line _H 1
segment of unit length in directiame -1, ~ T'Bab(0, )\

Theorem 2. The contact distribution functiong of

Explicit formulae for contact and chord length _" 5" =
=ris given by

distribution functions of the Poisson-Voronoi
tessellation are given inHeinrich (1998 and 1—HgRg(r)

Muche and Stoya(1992). f I 10-1g~MVa (Uyeraanor) b(t”_y’Ht“_y”))ad,l(du)dt

Theorem 1. (Heinrich, 1998 Theorem 1) LetB R4 ~ _ 0!
be a compact, star-shaped set containing the origin. f td—le—)‘Vd(Uyeme) b(tu—y,utu—yu))ad L(du)at
For r > 0 the contact distribution function g{r) of = Ogi-1 -
is given by

Proof. The application of the law of total probability
1—Hg(r) to the definitions oHg g andT=,(B) yields
A / / (0L AVa(Uyers DU 1010 g, (et Her(r) = 1— ~—1=(B) @

- ’ 1-W.d(ZR)
Now use Eqgs6, 5, and Theorem 1. Ol

Remark 1. For d = 2 and d= 3 the spherical contact : gt :
distribution function o has been computed explicitly E())(?gil %(10 (f)pcvzrlﬁgllé:ontact distribution functian)

in Muche and Stoya(1992. For d = 2, it is given by
T=:(rB) = Hb(071+$)(r) =Hs(r+R).
1_ 2 1 2
Hs(r) = 1-Je amr +5e et Hence, HR(r) = 1 — % where the explicit

o formulae for Hin d =2 and d= 3 are given in Remark
_om /pef)\ ((4r2+2p2)(nfarccoslr3)+6r\/pzfrz) do . 1
/

3
© DENSITIES OF THE INTRINSIC
and for d= 3 we have VOLUMES

/ 232, (12, 2 In this section we study the densities of the
Hs(r) 21—47T)\/Pzef S 9dp (4)  intrinsic volumes of the random closed s&k in
0 R? and R3. These exist sinc&r fulfills the above-
® in . mentioned conditions for the existence of the limit
_ A1 /pze*)‘ﬁ(”m do . (Eq. 1) which follows from the representation (E2).
r

We derive integral formulae for the densities of

. _ area and boundary length R? and for the volume
Remark 2. The volume density)j of =g equals the  gensjty and the specific surface area 3. The

spherical contact distribution function &, i.e., interpretation of these two densities is straightforward
_ and they are sufficient for the estimation of the
W,d(Zr) = Hs(R). (®)  parametera andR.
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Theorem 3. For d = 2, the area density Ar is given Let now X ¢ RY be a compact, polyconvex
by Hs(R) in Eq. 3. The density of the boundary lengthand topologically regular set. Then the Euler
Lar Of =R is given by characteristics oK and the topological closurk® of

the complement oX are related via

X(X) = (=14 x(X®),
L4 /mpe)\ ((4R2+2p2)(nfarccos/§)+6R\ /pLRZ) see Ohser and Schladit2009 Formula (3.11)). Since
R

LA,R — 47TA <Re—47T)\R2 _ Re—67T)\R2

=rN K with K € 27 fulfils the requirements listed
above, the density of the Euler characteristic can be

(R(n— arccosB) n \/ﬂ) dp) interpreted ag—1)4"1Ny g.
i

For the interpretation ofly r, we remark that the
_ densities of the integral of mean curvaturexocdndX¢
Proof. By Stoyanet al. (1995 Equation (6.2.4))Lar  jyst differ by a factor—1 (Ohser and Schladit2009
can be obtained dsyr = (1~ Aar)Hsr(0). L' .159). Furthermore, the mean widifK) of a convex
bodyK € .7 is related to its integral of mean curvature
The integrals can be evaluated numerically. Plot$/(K) via M(K) = 2mb(K) (Ohser and Schladitz
for the densities of area and boundary length for 2009 p. 21). Hence, we get
tessellation with unit intensity as functions Bfare _
shown in Fig.3. My r = —21Ny rbR,

Theorem 4. For d = 3, the volume densityi\k of =g
is given by H(R) in Eq. 4. The surface area density
S/r Of =g is given by

where b=R is the expected mean width of the eroded
cells of the tessellation.

In applications, the values d¥lyr and xyr (or
R XAR) can be used to validate a Poisson-Voronoi model
Z/pze*" TR0 (3R2 4 p?)dp ~ Which has been fitted using/ g andS,r (or Aar and
LaRr). This is of particular interest since the estimators
" for the intrinsic volume densities used in this
_A4T(Ry ) 3 paper estimate all densities simultaneously (see also
+/pe ? (R+p)°dp Ohser and Schladit{2009). Hence, characteristics
R for parameter estimation and model validation can be
obtained in one single estimation step.

 641PA?
-3

S/R

0

Proof. By Stoyanet al. (1995 Equation (6.2.4))Svr

can be obtained &8/ — (l—Vv,R)HgR(O)- = For these reasons, we believe that also the intrinsic

volume densitiega r for d = 2 andMy r and xy r for
d = 3 deserve an investigation. Since we do not see a

As in the planar case, the integrals can be evaluategay to obtain analytical formulae for them, they are
numerically. Plots for the densities of volume andstudied by simulation.

surface area for a tessellation with unit intensity as

functions ofR are shown in Figé. For d = 2, the density of the Euler characteristic

was estimated from 50 realisations of a stationary

For the interpretation of the remaining intrinsic Poisson-Voronoi tessellation with intensiy= 1 in a
volumes we notice that the complement of the randorgquare with edge length 40. The dilated edge systems
closed seEg forms a particle process kY. It consists  of the tessellations were discretized in binary images
of non-overlapping convex polytopes which are erodegyith 2000x 2000 pixels. The density of the Euler
versions of the cells of the tessellation (see BjgWe  characteristic was estimated from the image data using
denote its intensity by r. Alternatively, we can write  the estimator proposed i@hser and Schladit2009
Nv,r = PrA, Wherepr s the probability that the typical which is implemented in the MAVI software package
cell 'survives’ an erosion with a ball of radil® For  (Fraunhofer ITWM 2009, see Fig3 and Tablel.
particle processeX of non-overlapping objects with
intensity Ny, the additivity of the intrinsic volumes
yields

In the cased = 3, the densities of the integral
of mean curvature and the Euler characteristic were
o estimated from 30 realisations of Poisson-Voronoi
Wk(X) = NVEW(X0). tessellations with unit intensity in a cube with edge
whereXj is the typical grain oK (Schneider and Weil length 10, i.e,, containing 1000 cells on average.
2008. The dilated facet systems of the tessellation were
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discretized in binary images with 1090oxels. Again,

the densities of the intrinsic volumes were estimated o
from the image data using the estimators proposed in
Ohser and Schladit2009; see Fig4 and Table2. e
£
0‘0 0‘1 0‘2 0‘3 0‘4 0‘5 0‘6
R
P |
O‘O OII 0‘2 0‘3 0‘4 0‘5 0\6 ° ; | - - - - -
R 00 0.1 02 03 04 05 06
R
j o § T -
O‘O OII 0‘2 0‘3 0‘4 0‘5 0\6 0‘0 0‘| 0‘2 0‘3 0‘4 0‘5 0‘6
R R

00
I

0.0 0.1 02 03 0.4 05 06

Fig. 4. Densities of volume, surface area, integral of

mean curvature, and Euler characteristic of a dilated

Poisson-Voronoi tessellation &3 with intensityA =1

gs a function of R. Circles correspond to the mean

e -Values estimated from 30 realisations of the model. The

realisations of the model. The envelopes plotted in . L '
nvelopes plotted in grey are the minimal and maximal

grey are the minimal and maximal values from the 50 | f h lisati
realisations. values from the 30 realisations.

Fig. 3. Densities of area, boundary length, and Euler
characteristic of a dilated Poisson-Voronoi tessellation
in R? with intensityA = 1 as a function of R. Circles
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Remark 3. The limits of the intrinsic volume densities shape. This indicates that a tessellation with more
for =g for R — 0 can be computed from geometric regular cell shapes might be a preferable model for this
characteristics of the Poisson-Voronoi tessellation. Formaterial.

d =2, we have Unfortunately, the validation method suggested

Apn—0 above is not applicable for this data set: it is well-
A0 =5 known that the estimators fdly andxy are sensitive
Lag=2L=4A %7 and to the resolution of the imagedDhser and Schladitz
XA/O =-A 2009. In the current image, the resolution is not high
’ ’ enough to fully resolve the cell walls which are slightly

where L denotes the expected total edge length ¢¥erforated in the binary image. While the effect on the
the Poisson Voronoi tessellation per unit volume. Foestimates of the volume and surface density (loss of

d = 3, we get several pixels) is negligible, the estimadg = 10.61
mm~2 and Yy = —4012 mm 2 are highly affected.
Vo =0, In particular, the discussion in the previous section
' 1 shows that a negative value g, should be expected
Svo=25~582M3, for the dilated facet system of a three-dimensional
My o = —27h ~ —9.161)\*%, and tessellation Wh_ile)(v should be positi_ve_. In the foam
’ example, the signs of both characteristics are reversed.
Xvo=A, Consequently, their interpretation is questionable and

where S denotes the expected total surface area of tﬁgey cannot be used for model validation.

facets of the tessellation per unit volume, dnis the
expected mean width of its typical cell.

APPLICATION

In this section we apply the formulae ok r
andSy r derived above to fit a Poisson-Voronoi model
to the microstructure of a closed-cell polymer foam
which is used for the insulation of buildings. We
analysed a CT image of the material consisting of
480 x 480 x 360 voxels with a voxel edge length
of 10.21 um. The densities of volume and surface
area were estimated from a binarised version of th
image using the estimators d@hser and Schladitz
(2009. The estimated values aM, = 7.91% and
S/ = 6.983 mntL. Based on the formulae given in
Theorem4 we fitted the parameters of the dilated
Poisson- Voronoi tessellation to the estimated value
using a Nelder-Mead simplex optimisation procedure

(Nelder and Meadl965. The distance function which
was minimised was Fig. 5. Visualisations and sectional images of the

original foam (left) and the fitted Poisson-Voronoi
W ~\WA,R 2 S/ — S (AR 2 model (right). Sample and CT imaging: R. Schlimper,
f(A,R) = <\7v ) + <év > > Fraunhofer IMW Halle.

wherev’ (A,R) andS) (A, R) are the characteristics for

a dilated Poisson-Voronoi tessellation with intensityRemark 4. If = is a stationary and isotropic random
A and dilation radiusR. The results arés — 1989 closed set inR? then its volume and surface area
mm-3 and R = 9.904 um which corresponds to density are related to the area density And the
va(j\ﬁ) — 7.08% and$(5\,ﬁ) — 6.984 mntl. The boundary length R of the two-dimensional section
fit of these values is relatively close. However, the= N (R? x {0}) via

visualisations of the original sample and the model 4

shown in Fig.5 show a certain deviation in the cell W=A; and §= 7T'—§~
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Hence, a three-dimensional model can also be fited APPENDIX
based on measurements in 2D images. Whenever

possible, three-dimensional data should be preferred
for the model fit. In the data presented above, the
area fractions estimated from sectional images var
between6.74% and 9.41% Hence, the choice of a
single slice might lead to a significantly different
estimation of the model parameters.

Tables1 and 2 contain the means and standard
eviations of xar, Myr, and xyr estimated by
simulation.

Table 1.Values ofyar in R? estimated by simulation.

Nevertheless, the possibility to fit a model using

2D observations is valuable for materials which are R XAR XAR
not tractable to 3D imaging techniques, e.g., the sinter mean sd
material shown in Figl. 0.025 -0.9993 0.0224

0.050 -0.9995 0.0226
0.100 -0.9976 0.0224
0.150 -0.9853 0.0210
0.200 -0.9484 0.0194

DISCUSSION 0.250 -0.8784 0.0159
0.300 -0.7682 0.0114

We have studied the densities of the intrinsic 0.350 -0.6308 0.0094
volumes of the dilated facet systems of stationary 0.400 -0.4829 0.0105
Poisson-Voronoi tessellations i®? and R3. We 0.450 -0.3435 0.0108
obtained analytical formulae for the densities of the 0.500 -0.2257 0.0116
area and boundary length & and the volume and 0.550 -0.1359 0.0098
surface area irR3. The densities of the remaining 0.600 -0.0771 0.0072
intrinsic volumes could only be studied by simulation. 0.650 -0.0406 0.0044

The results presented in this paper allow for a

quick and easy fitting of stationary Poisson-Voronoi

tessellations to cellular materials. Since two of e

the intrinsic volume densities are sufficient for the 1aPI€ 2.Values of Mg and xvr in R estimated by
parameter estimation, the remaining ones can be us&fnulation.

for model validation.

In many applications, tessellation models R MR Mv R XV.R XV.R
generated by regular point processes might provide mean sd mean sd
better model fitting results. Nevertheless, the Poisson- 0.025 -8.9695 0.2039 1.0025 0.0335
Voronoi tessellation could be sufficient in cases  0.050 -8.5529 0.1901 1.0022 0.0347
where the cell shape is of minor importance. 0.100 -7.7027 0.1598 1.0026 0.0341
Furthermore, thanks to its analytical tractability it 0.150 -6.8224 0.1268 1.0014 0.0348
plays an important role as reference model. Due to  0.200 -5.8910 0.0928 0.9989 0.0329
the independent placement of the cells’ generators in  0.250 -4.8739 0.0550 0.9758 0.0327
the Poisson-Voronoi tessellation this model yields a  0.300 -3.7635 0.0250 0.9218 0.0283
very disordered structure. Hence, it could also be seen 0.350 -2.6042 0.0390 0.7827 0.0193
as an extreme case which can possibly provide bounds 0.400 -1.5528 0.0516 0.5707 0.0141
for characteristics of more regular tessellation models. 0.450 -0.7594 0.0484 0.3366 0.0161

, o 0.500 -0.2938 0.0311 0.1542 0.0138
Formulae for the spherical contact distribution 0.550 -0.0872 0.0160 0.0532 0.0069

function of more general Voronoi tessellations and of 0.600 -0.0199 0.0082 0.0134 0.0043
Poisson Laguerre tessellations were givehri@inrich
(1998 and Lautensack(2007), respectively. These
formulae could be used to extend the results from this
paper to further tessellation models. So far, however,
these formulae are given in less explicit form than the ACKNOWLEDGEMENTS
formulae for the Poisson-Voronoi tessellation which
hinders their applicability.
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